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INTRODUCTION  

Bengkulu is a province in Indonesia with a pronounced risk of landslides, particularly 
evident along the North Bengkulu-Lebong Mountain Road, situated in a mountainous region 
(BPBD, 2019). This area is highly susceptible to land movement disasters, as highlighted by 
Ouimet et al. (2007). The geological characteristics of the North Bengkulu-Lebong Mountain 
Road, located within the Sumatran fault zone, extend from south to north, resulting in steep slopes 
(Ariyanto & Joni, 2019). Functioning as a crucial transportation route connecting Lebong Regency 
with other regions in Bengkulu Province, the North Bengkulu-Lebong Mountain Road is in close 
proximity to residential areas and has isolated several sub-districts. The morphology and 
topography of this cross-district mountain road are hilly and sloping, characterized by high 
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 ABSTRACT 
 
The North Bengkulu-Lebong Mountain Road is prone to landslide disasters 
due to its geological susceptibility to land movement. This study aims to 
measure and assess the sliding plane on the mountain road, particularly in the 
layer with a soft rock structure, such as clay rock. The study utilizes 2D and 
3D Electrical Resistivity Tomography (ERT) methods with the Wenner-
Schlumberger configuration to measure the resistivity of the rock layers.The 
research includes one 2D measurement point and one 3D ERT measurement 
point, estimating actual resistivity values in each rock layer. Our results 
identify triggering and controlling factors for landslide disasters in the 
research area. The geological conditions consist of layers of clay (200-500 
Ωm), wet clay (500-900 Ωm), dry clay (1000-3000 Ωm), weathering clay (500-
1000 Ωm), aquifer (10-65 Ωm), perched aquifer (100-200 Ωm), weathering 
igneous rock (>10000 Ωm), and massive intrusive rock (>20000 Ωm). These 
geological conditions significantly influence the strength of landslide 
materials, with the sliding of the soft rock layer causing landslides and 
resulting in a large volume of landslide material. Other contributing factors to 
landslides in this location include slope, topography, and hydrology, with 
extreme slopes ranging from 33° to 55°, making it a very steep area with high 
potential for landslides. 
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steepness, posing a significant risk to road users in the event of landslides (Smethurst et al., 2017). 
Bengkulu Province, including the study area, experiences relatively high annual rainfall, 
averaging between 235-280 mm/year (BMKG, 2012). These environmental conditions 
collectively render the North Bengkulu-Lebong Mountain Road highly susceptible to land 
movement, commonly known as landslides. 

Various factors contribute to the occurrence of ground motion, including rainfall 
(Wieczorek & Jäger, 1996), rock structure (Agliardi et al., 2013), slope, and land use 
(Hugenschmidt, 2010; Smethurst et al., 2017), as well as earthquakes (Huang & Fan, 2013). The 
North Bengkulu-Lebong Mountain Road serves as a highly active and busy transportation route 
for land transportation. Vibrations generated by the constant movement of vehicles on this route 
can induce ground motion, leading to changes in the physical properties of the soil on the surface 
(Ismail et al., 2002; Maslin, 2015). These land movement disasters can have severe impacts if not 
handled properly, leading to economic problems (Dai et al., 2002). An illustrative example is the 
landslide event in 2021. The community experienced the disruptive effects of the landslide 
disaster in 2021, notably the disruption of the land transportation system on this route as the 
road was entirely covered by landslide material.  

Landslides have a significant impact on road users, emphasizing the importance of taking 
initial steps to minimize potential effects, commonly known as landslide mitigation and 
management (Dai et al., 2002). One mitigation strategy to reduce the risk of landslides involves 
understanding the rock structure to prevent or control ground motion (Soeters & Westen, 1996). 
To identify and mark areas prone to ground motion, it is essential to conduct detailed and 
thorough measurements of the rock layer, including lithology, depth, structure, and landslide 
sliding in locations that have experienced ground motion. The 2D and 3D Electrical Resistivity 
Tomography (ERT) method is employed for this purpose (Boyd et al., 2021; Grifka et al., 2022). 

The study and investigation of landslide slidings can be conducted using various 
geophysical methods (Jongmans & Garambois, 2007), one of which is the resistivity geoelectric 
method. This method is widely utilized for assessing external surfaces with the potential for 
landslides (Shevnin et al., 2007). A case study of landslide sliding was carried out using the 
geoelectric resistivity method in Kebarongan Village, Kemranjen Subdistrict, Banyumas Regency. 
The interpretation results revealed that the lithology of Kebarongan village comprises four soil 
layers. The topsoil consists of sandy clay, wet clay, and sandy clay (Sugito & Jati, 2010). The 2D 
and 3D Electrical Resistivity Tomography (ERT) method is frequently employed in landslide case 
studies to examine the rock structure, bedrock, and landslide sliding (Bell et al., 2006; Grifka et 
al., 2022; Hojat et al., 2019; Lapenna et al., 2003; Souisa et al., 2018; Supper et al., 2014). 

The condition of each landslide sliding found at each location exhibits unique 
characteristics, making it challenging to generalize solutions for other places. Appropriate 
landslide mitigation involves identifying the specific rock structure and landslide sliding 
conditions at the research site. Lithology and landslide sliding conditions obtained from the 
research results serve as crucial references in determining suitable mitigation strategies for 
landslide disasters. Modeling based on the measurement results of 2D and 3D Electrical 
Resistivity Tomography (ERT) Geoelectric methods helps provide information on rock layers 
prone to landslide sliding, with a high sensitivity to rock material up to a depth of 100 meters.. 
This study aims to measure and assess the sliding plane on the mountain road  utilizing 2D 
Geoelectric and 3D ERT measurements.  
 
GEOLOGICAL SETTING 

Barisan Mountains dominate the Bengkulu quadrangle, with the eastern part belonging 
to the South Sumatra Basin and the western part to the Bengkulu Basin. The study area is a 
plateau situated on the Sumatra fault zone, associated both faults , namely the Ketaun faults and 
Musi-Keruh faults, alluvium and volcanic product (Figure 1). The elevation on this plateau 
reaches up to 500 meters above sea level. The oldest exposed unit is the Seblat Formation, 
comprising limestone, and sedimentary clastic derived from volcanic product of the Barisan 
Mountains. The Simpangaur Formation consists of shallow marine sediment including lignite coal 
and muddy freshwater deposits. Taxonomically overlying the Simpangaur Formation is the Plio-
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Plistocene-aged Bintunan Formation. This formation forms part of the Barisan volcanic chain, 
stretching along the western part and paralleling the long axis of Sumatra Island. It served as an 
area of magmatic activity since the tertiary periods. Starting from the upper part of the Middle 
Miocene onwards, the volcanic rock composition of the Barisan Line becomes more diverse, 
ranging from andesite-basalt to dacite-rhyolite, indicating the maturity level of the volcanic arc. 
The elusive volcanic rock units include QTv and other formations. 

 

 
 
 

Figure 1.  (a) Local geological formation, adapted from Gafoer et al. (2007); (b). 3D and 2D 
Geoelectric survey line 
 
 

Table 1. Units of geology at research sites, modified from Gafoer et al., (2012). 
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Sandstone: Brownish-grey color, medium to coarse, parallel 
lamination, and grained bedding. 

 

Conglomerate: Compact with clasts of afford rock.  
 
 

 

Limestone: Yellowish-white in color and contain foraminifera, as 
do the marls. 
 

 

Claystone: Partly calcareous, thinly bedded. 
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Conglomerate: Yellowish-brown to gray in color, medium sorted 

with clasts 0.3-1.0 cm of andesite, tuff, and altered rock.  

 

Breccia: Medium-sorted fragments of andesite, tuff dacite, and 

basalt. 

 

Sandstone: Medium grained and carbonaceous. 

 

 

Claystone: Both carbonaceous & calcareous beds 10-40 cm thick, 

freshwater Mollusca. 
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Conglomerate: Yellow-grey color, medium sorted, comprises 

clasts of andesite, pumice, tuff, slate, and altered rock.  

 

Breccia: Black-grey color, dominated by volcanic fragments, 

especially lava.  

 

Claystone: Brownish-grey, soft and friable, tuffaceous with 

pumice and silicified wood, also lignite intercalations. 
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Lavas: Rhyolite, dacite, and andesite lavas are mainly aphanitic 

but, sometimes, prophyrilityc the andesite. Locally “sheet lavas” 

occur, for example, in Pikai and Air Rupit. 

 

Hybrid Tuff: Yellowish-white in color, carbonaceous with pumice 

and silicified wood. 

 

Lithic Tuffs: Khaki to brown-grey in color, generally poorly 

sorted, 0.3-1.0 cm, angular to subrounded clasts, and up to 30% 

Volcanic glass. 

 
 
METHODS 

The study was conducted in a mountainous area along the North Bengkulu-Lebong 
mountain road in Bengkulu Province. Geo-electrical measurements were carried out using 2D and 
3D Electrical Resistivity Tomography (ERT) for data acquisition. The study involved one 2D 
measurement point and one 3D ERT measurement point. 3D measurements produce resistivity 
changes in the X, Y, Z, and 2D X, Y directions (Figure 2) (Eze et al., 2022). Observations method 
can estimate the actual resistivity value in each rock layer (Bou-Hamdan & Abbas, 2022). The 
measurement track length was 480 meters with 48 electrodes, spaced 10 meters apart, and 
oriented in the north direction. Measurements utilized the Wenner-Schlumberger configuration. 
The data acquisition technique involves injecting an electric current into the subsurface and 
obtaining the electric potential value from the rock response beneath the ground surface 
(Reynolds, 1997). The governing equations for 2D and 3D modeling are provided by Zhou & 
Greenhalgh (2001): 

 

2D Modeling: ∇. (𝜎∇�̂�) + 𝐾2𝑦�̂� =
−𝜎(𝑥−𝑥𝑠)

2
 (1) 

3D Modeling: ∇. (𝜎∇𝐺) = −𝐼𝛿(𝑥 − 𝑥𝑠) (2) 

 

(a) 

 

(b) 

                            Figure 2. Illustration (a). 2D model, and  (b) 3D model (Zhou, 2018). 
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The 2D data were processed using Excel and Res2Dinv software to generate a 2D cross-
sectional model accounting for topographic effects. The 3D model was obtained using ERTLab 
and ViewLab software. The analysis of both 2D and 3D models takes into consideration the 
geological conditions, slope, and topography of the study site. 

 
RESULTS AND DISCUSSION  

Because of its highly complex deformation features, rotational landslides constitute a 
distinct category. Typically, rotational landslides involve arc-shaped, deeply buried, and large-
scale sliding surfaces (Ma et al., 2023). Rotational landslides undergo a complex process 
characterized by strong and recurrent slope instability (Frattini et al., 2018). These rotating 
landslides can pose a threat to infrastructure and individuals. Consequently, it is crucial to 
understand the features and processes associated with rotational landslides (Ma et al., 2023). 

The mountain road is in a condition that makes the constituent materials on this slope 
prone to landslides, causing them to easily cascade and overlap surrounding objects. The volume 
of material involved in landslides increases with the slope angle (Chen et al., 2016). The hill at the 
research site (Figure 3) has a slope angle ranging from 35° to 55° and decreases by 4° to 8° at the 
ground surface, where the North Bengkulu-Lebong Mountain road is located. The slope angle of 
35°-55° is notably steep and poses a high potential for landslides. 

ERT is an in-situ geophysical technique that integrates resistivity profile surveys with 
vertical electrical prospecting. The ERT approach accurately depicts the electrical resistivity 
distribution in the subsurface in high-resolution 2D or 3D, based on the fluctuation in resistivity 
values between the landslide material and the bedrock (Bichler et al., 2004). One of the 
applications of the ERT approach is the examination of landslides. The planar geometry of 
landslides and the subsurface aquifers with significant water content can be identified using 2D 
and 3D ERT approaches (Perrone et al., 2014; Bellanova et al., 2018). When observing landslides, 
the ERT approach stands out as one of the most effective resources for examining the causes of 
mass movements linked to water infiltration and temporal and geographical variations in soil 
moisture. In time series approach, resistivity images are substantially related to time, particularly 
changes in soil water content and subsoil (Lapenna & Perrone, 2022). 

The 2D field data were processed using Res2Dinv software, and the 3D field data were 
processed using ERTLab 64 software. The model obtained from the data processing process 
reveals deviations from the field values to the earth resistivity values. The difference between the 
obtained and actual resistivity values is referred to as the Root Mean Square Error (RMSE), which 
can be minimized by iteratively repeating the data. Thus, to reduce the RMSE value, a least 
squares optimization method is applied in the subsequent stages of data acquisition (Lesparre et 
al., 2016). 

The 2D model (Figure 4) depicts the complex stratigraphy of the study site. This research 
specifically examines the layer prone to landslide sliding. The 2D stratigraphic model generated 
from measurements at the research site is presented in Figure 4, along with the interpretation 
results for each rock layer shown in Table 2. The continuous wet clay rock layer from 0-480 
meters is a potential subsidence-prone layer. The aquifer layer present at this location is one of 
the contributing factors to the overlying rock layer's susceptibility to land movement, serving as 
an initial cause for potential landslides. Factors contributing to landslides in this area are 
influenced by the rock structure, which is dominated by soft rock, an extreme slope, slope failure 
in the clay layer (evenly distributed), and hydrology in the study area. The results of the 2D m 
odel reveal the presence of rock intrusion and weathered intrusive rocks. This rock intrusion 
leads to uneven aquifer distribution and undulation in the study area. 
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Figure 3. (a). Local map of the slope; (b). Overlay of a 3D and 2D geoelectric survey line with 
slope map. 

 
The 3D model (Figure 4) shows the continuity of each rock layer to a depth of 80 meters 

in the X, Y, and Z directions on the North Bengkulu-Lebong mountain road. In the 3D 
measurements, resistivity values are scattered, with low resistivity values (115-500 Ωm) believed 
to indicate water-saturated layers, and some spots with high resistivity values (1000-10000 Ωm), 
considered to be high porosity layers. The layer with a high resistivity value in the topsoil 
corresponds to a layer of soil resulting from the weathering of plants, often referred to as humus 
soil, while the high resistivity value (>10000) below 60 meters is fresh massive rock. Resistivity 
values generally decrease with porosity because the electrical properties in the subsurface are 
influenced by the quantity and quality of groundwater trapped in rock pores (Paraskevoulakos 
et al., 2023). 

Table 2. Interpretation of each layer on 2D modeling 

Layer Resistivity (Ωm) 

Clay 200-500 Ωm 

Aquifer 10-65 Ωm 

Perched Aquifer 100-200 Ωm 

Weathering Clay 500-1000 Ωm 

Wet Clay 500-900 Ωm 

Dry Clay 1000-3000 Ωm 

Weathering Igneous Rock >10000 Ωm 

Massive Intrusive Rock >20000 Ωm 
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Figure 4. 2D modeling of research sites 

ERT measurements can be integrated or compared to data from meteorological, 
hydrological, and other geophysical techniques (Zieher et al., 2017; Hojat et al., 2019). By 
comparing and integrating different methods and techniques, the limitations and shortcomings 
of each method can be addressed, leading to optimal results. Furthermore, the integrated results 
suggest that ERT efficiency can provide quantitative information on water content and indicate 
preferred pathways for groundwater intrusion. The capabilities of the ERT method make it highly 
valuable for better assessment and study of the effects of water saturation to estimate 
precipitation thresholds in early warning systems for landslides (Lapenna & Perrone, 2022). 

 

 

 

 

Figure 5. 3D modeling of research sites 

 

The results of the 3D modeling reveal the presence of two landslide slidings at a single landslide 
location (Figure 5), contributing to a larger volume of landslide material. This occurrence is 
suspected to be caused by subsurface water. The groundwater layer is unevenly distributed and 
is constrained by an impermeable clay layer. The undulating topography of the study area leads 
to uneven distribution and accumulation of the groundwater layer in the slope basin. This 
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phenomenon is influenced by the downward infiltration of water due to the force of gravity. The 
schematic representation of this process can be observed in Figure 6. 
 

 
 
Figure 6. Illustration of landslide sliding in the study area, which has two landslides sliding in one landslide 
location (Frattini et al., 2018) 

 
The water layer significantly influences the condition, shape, and distribution of the 

landslide sliding on a particular slope. The slope of the landslide sliding at the research location 
does not exhibit uniform conditions (Figure 6). This variability is a factor that renders an area 
susceptible to landslides. The presence of the slip plane at this location means that not the entire 
North Bengkulu-Lebong Mountain road is prone to landslide disasters. The case study in this 
research affirms that each landslide location has a unique condition for the slip plane, even when 
situated in the same area. This variability makes the case study of landslides particularly 
intriguing for research. 

The displacement of landslides occurring along the main landslide area can reveal 
different kinematic behaviors of rotational landslides (Frattini et al., 2018). Moreover, changes in 
the sliding surface may lead to exceedingly complex patterns of landslide material displacement. 
Consequently, we investigated the kinematic behavior of rotating landslides using 2D and 3D ERT 
observations. Fieldwork was employed to distinguish distinct types of landslides and to 
determine depth, secondary landslide reach, and secondary embankment sites, in addition to 
defining the geometry of the sliding surface (Ma et al., 2023). 
 
CONCLUSION 

The landslide that closed the North Bengkulu-Lebong Mountain Road had a devastating 
impact on road users and economic activity. The landslide was caused by two sliding events on 
the cliff section of the road. The layers prone to landslide movements at the research location are 
composed of clay and wet clay rocks. The impermeable nature of this clay layer makes it 
susceptible to soil movement. The primary factor at the landslide location on the North Bengkulu-
Lebong Mountain Road is the extreme slope, making the clay layer prone to displacement and 
resulting in the material above it undergoing landslides. This situation leads to continuous 
landslides on the Bengkulu Utara-Lebong Mountain Road. The findings of this research can serve 
as a basis for further studies on mitigation strategies, such as selecting appropriate materials for 
building retaining walls and designing reconstruction models. Implementing such measures can 
contribute to resolving landslide issues on the Bengkulu Utara-Lebong Mountain Road. 
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