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INTRODUCTION  

Seagrass beds play a vital role in providing a wide range of ecosystem services, both 
ecologically and economically, at local and global levels (Nordlund et al., 2016; UNEP, 2020). They 
support a diverse array of marine biota, including fish, crustaceans, and sponges, which are 
essential for ensuring food security from the marine sector. Moreover, seagrass beds contribute 
to the prevention of coastal erosion, sediment stabilization, water purification, bacteria filtration, 
and serve as a rich source of biodiversity for marine animals. Additionally, they effectively absorb 
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 ABSTRACT 
 

Comprehensive information on seagrass biodiversity indicators, such as 
species composition, percentage cover, and biomass carbon stock, remains 
limited across various regions globally. Mapping these indicators using 
remote sensing images requires extracting maximum information from the 
input images to achieve effective results. This study aims to map seagrass 
distribution, percent cover (PC), and aboveground carbon stock (AGC) as 
biodiversity indicators in the optically shallow waters surrounding Pari Island. 
We integrate WorldView-2 (WV2) derivatives, field seagrass data, and RF 
classification and regression algorithms to accomplish this objective. The 
WV2 image derivatives encompass surface reflectance bands, band ratios, 
mean and variance co-occurrence texture bands, and principle component 
bands. These inputs are used individually and collectively for mapping, 
employing a random forest algorithm trained with field seagrass data. Our 
results demonstrate that the most accurate benthic habitat map achieves an 
overall accuracy (OA) of 65.2%, with a user's accuracy of 65.2% and a 
producer's accuracy of 72.8% for the seagrass-dominated class. Seagrass PC 
mapping yields a root mean square error (RMSE) of 17.1%, with an average PC 
of 47.4 ± 9.9%. Seagrass AGC mapping achieves an RMSE of 5.0 g C m-2, with 
an average AGC range of 6.2 – 29.1 g C m-2, estimating the study area's 
aboveground biomass carbon stock at 27.9 tons C. Combined inputs produce 
the most accurate results for all biodiversity indicators, emphasizing the 
importance of utilizing combined bands from SR band derivatives to 
maximize information input for training mapping algorithms, instead of using 
derivative bands individually or as replacements for the initial SR bands. 
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carbon, making them a crucial component in efforts to adapt to and mitigate climate change 
(Fourqurean et al., 2012; Nordlund et al., 2016; UNEP, 2020). Therefore, the preservation of a 
healthy seagrass ecosystem is of utmost importance for climate change adaptation and mitigation, 
and a comprehensive understanding of seagrass ecosystem biodiversity is essential for effective 
ecosystem management and the maintenance of associated services. 

Managing seagrass ecosystems requires a comprehensive understanding of the spatial and 
temporal distribution of their biodiversity. Mapping seagrass beds is best achieved through remote 
sensing, as demonstrated by numerous studies (Green et al., 2000; Hossain et al., 2015; Pittman et 
al., 2021). Remote sensing techniques have proven successful in mapping various indicators of 
seagrass biodiversity, including species composition, percentage cover, leaf area index (LAI), and 
aboveground biomass carbon stock (AGC) (Phinn et al., 2008; Wicaksono & Hafizt, 2013; Roelfsema 
et al., 2014; Wicaksono et al., 2019; Pittman et al., 2021; Wicaksono et al., 2022a; Wicaksono et al., 
2022b; Wicaksono et al., 2022c). 

To map seagrass, researchers have employed a range of inputs, starting from reflectance 
bands, sunglint-corrected bands, water column-corrected bands, texture bands, principle 
component bands, to band ratios (Wicaksono, 2016; Wicaksono et al., 2022a; Wicaksono et al., 
2022b; Wicaksono et al., 2022c). Additionally, various types of remote sensing imagery, such as 
Landsat, Sentinel-2, IKONOS, Quickbird, PlanetScope, and WorldView-2, have been utilized 
(Hochberg, et al., 2003; Mishra, et al., 2006; Wicaksono, et al., 2019; Wicaksono et al., 2022a; 
Wicaksono et al., 2022b; Wicaksono et al., 2022c). Methodologies employed include parametric 
classification and regression, as well as non-parametric machine learning classification and 
regression (Pittman et al., 2021). 

However, despite these advancement of remote sensing for seagrass mapping, 
comprehensive information regarding biodiversity indicators such as species composition, 
percentage cover, and biomass carbon stock remains limited across many regions of the globe. 
This scarcity is particularly evident when it comes to their spatial and temporal distribution. 
Previous studies have acknowledged the difficulties associated with mapping seagrass biodiversity 
using remote sensing techniques (Hossain et al., 2015; Wicaksono et al., 2019; Pittman et al., 2021). 
Consequently, to effectively map seagrass using remote sensing images, it is crucial to extract as 
much information as possible from the images used as the foundation for mapping. Fortunately, 
the advancement of machine learning approaches provides a viable solution for leveraging 
abundance information to map seagrass. Hence, in this study, we employed various image analysis 
techniques to derive various unique information from the WorldView-2 bands, which can be used 
in conjunction with the original reflectance bands of WorldView-2, to map seagrass biodiversity 
indicators. 

The objective of this research is to utilize the integration of WorldView-2 derivatives, field 
seagrass data, and machine learning classification and regression algorithms to map seagrass 
biodiversity indicators in a specific area of Pari Island. The mapped indicators of biodiversity in this 
study encompass seagrass distribution, percent cover, and above-ground carbon stock (AGC). 
WorldView-2 (WV2) imagery was selected due to its ability to detect underwater objects using its 
six visible bands. Although WorldView-3 (WV3) imagery has similar underwater object detection 
capabilities and offers a higher spatial resolution compared to WV2, it is regrettably unavailable on 
Pari Island. Alternatively, Planet SuperDove imagery features a high spectral resolution with seven 
bands that could potentially detect underwater objects. However, the effective utilization of 
SuperDove imagery for mapping underwater objects is hindered by significant noise and 
inconsistent radiometric image quality, particularly in water areas (Wicaksono et al., 2022b). 
 
STUDY AREA 

The study area chosen for this research manuscript is Pari Island, located in the Thousand 
Islands area of DKI Jakarta Province. This region has limited spatially- and temporally-extensive 
information regarding seagrass biodiversity. Pari Island, known for its rich seagrass biodiversity, 
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possesses distinct characteristics in its seagrass beds, such as variations in substrate, species 
diversity, water clarity, depth, and epiphytic cover. Due to its popularity as a tourist destination for 
individuals from the Greater Jakarta area, Pari Island experiences significant human activity, 
particularly along its coastline where seagrass beds are directly affected.  

Pari Island harbors seagrass beds dominated by Enhalus acoroides (Ea) and Thalassia 
hemprichii (Th), along with other species including Syringodium isoetifoleum (Si), Cymodocea 
rotundata (Cr), Halodule uninervis (Hu), and Halophila ovalis (Ho). Seagrass beds can be 
categorized into two types based on their location. The first type is found on the south, northeast, 
and southeastern sides of Pari Island, situated on reef flats with clear, shallow water, white 
carbonate sand substrates, low epiphytic cover, and a dominance of Th and Cr species. The second 
type is found on reef flats and lagoons, characterized by turbid water conditions, a mixed substrate 
of sand and silt, high epiphytic cover, and a prevalence of Ea species with long leaves and high 
density. The elongated leaves of Ea may be an adaptation to maximize light absorption for 
photosynthesis in turbid waters. This characteristic is observed from the northwest side of the 
island to the deep lagoon. The tide on Pari Island follows a diurnal pattern (single daily tide) 
(Widisanto et al., 2022). Considering these conditions, it can be deduced that the biodiversity of 
seagrass beds on Pari Island is influenced by substrate conditions, water quality, water depth, 
tides, and epiphytic cover. 

Pari Island, as a popular tourist destination, attracts an annual average of 60,000 visitors 
(BPS Kepulauan Seribu, 2022). However, the island's waste management system is facing 
increasing pressure due to community activities, resulting in a growing waste problem. 
Unfortunately, much of this waste ends up buried in the roots of mangroves and the canopies of 
seagrass (based on direct field observation). Therefore, there is an urgent need for up-to-date 
spatial and temporal information on seagrass beds. This information plays a crucial role in 
monitoring the impact of community activities and ensuring the effectiveness of waste 
management practices. The study was conducted on Pari Island, located in Kepulauan Seribu, DKI 
Jakarta, as shown in Figure 1. The specific focus area for this study, indicated by the red polygon in 
the figure, was determined based on the availability of the latest WorldView-2 images. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Map of study area and the distribution of field seagrass data 
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METHODS 
Field Survey 

Field surveys were conducted from February 26 to March 3, 2023, to collect data on the 
benthic cover of seagrass ecosystems and determine the percentage of seagrass cover at the study 
site. We utilized a conversion formula developed by Wicaksono et al. (2021a) to calculate the AGC 
based on the percent cover. During the field surveys, we employed the photo-transect technique 
(Roelfsema & Phinn, 2010). The transects were divided into two sets: one set was used to train the 
classification and regression algorithm, while the other set was used to assess the accuracy of the 
mapping results. To analyze the data from the photo-transect surveys, we used CPCe software 
(Kohler & Gill, 2006). The CPCe analysis output produced information on the percentage cover of 
benthic habitat and seagrass species. We then rasterized the resulting data based on the GSD of 
the WorldView-2 image (2 m). In cases where a single pixel of the WorldView-2 image contained 
multiple sets of CPCe data, we calculated the average value for that pixel. 

 
Image Corection 

The WorldView-2 (WV2) ORStandard2A image product was acquired on October 9, 2021, 
and received as radiometrically calibrated digital numbers (DN). The specifications of the WV2 used 
in this study are provided in Table 1. The conversion from DN to Top-of-Atmosphere (TOA) spectral 
radiance and reflectance followed the procedure described in Updike & Comp (2010). Initially, the 
FLAASH method was chosen for atmospheric correction. However, the aerosol optical depth 
(AOD) at 550 nm product from MODIS (Bhatia et al., 2018), which is required to estimate the 
visibility value for FLAASH input, was not available on the date when the WV2 image were acquired. 
Consequently, the Dark Object Subtraction (DOS) method was employed to perform atmospheric 
correction on the WV2 images and to obtain surface reflectance (SR) bands from TOA reflectance 
bands. To determine the path radiance offset, the reflectance of clear optically deep water pixels 
was utilized as the reference samples. Since there was no presence of sunglint in the scene, 
sunglint correction was not applied. Additionally, water column correction was not necessary for 
our study due to the shallow reef flat nature of the seagrass meadows and minimal underwater 
topographic variations. Previous studies by Zhang et al. (2013) and Wicaksono et al. (2021b; 2022a; 
2022b) have also emphasized the negligible impact of water column energy attenuation on this 
benthic habitat condition. 

For the mapping activities, only optically shallow water areas were considered, and land 
and optically deep water pixels were excluded. Land pixels were masked out based on the 
thresholding of the NIR band, while unsupervised ISODATA classification was performed to 
identify the cluster of optically deep water areas, and the corresponding pixels of that cluster were 
removed. 

Table 1. WorldView-2 image specifications used in this study 

Acquisition date October 9, 2021 

Ground Sampling Distance (GSD) (m) 2 

Dynamic range 11-bits per pixel 

Spectral bands  Wavelength (nm) 

 Coastal 400 - 450 

 Blue 450 - 510 

 Green 510 - 580 

 Yellow 585 - 625 

 Red 630 - 690 

 Red Edge 705 - 745 

 Near Infrared (NIR) 1 770 - 895 

 Near Infrared (NIR) 2 860 - 1040 

Off-nadir viewing 21.6o 
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WorldView-2 Derivatives 
Several image transformations were applied to the WV2 SR bands in order to obtain 

derivative data that could enrich the mapping input during the mapping process. These 
transformations were selected based on their successful application in previous works focusing on 
benthic habitat and seagrass mapping, including Principle Component Analysis (PCA), co-
occurrence texture analysis, and band ratios (Wicaksono, 2016; Wicaksono, et al., 2022a; 
Wicaksono et al., 2022b; Wicaksono et al., 2022c). For PCA, all six bands ranging from coastal to 
red-edge bands were used as input, and the resulting PC bands were subset up to 99% of the total 
eigenvalues, which translates to the first three PC bands. PC4 to PC6 were considered as noise 
based on eigenvalue statistics and visual assessment of the resulting image. The co-occurrence 
texture analysis utilized mean and variance variables. Specifically, there are six mean texture bands 
and six variance texture bands, each derived from the visible bands. Additionally, 15 band ratios 
were obtained by calculating the ratios between visible bands. In total, these derivative data, 
combined with the SR bands of WV2, amounted to a total of 38 bands for the mapping process 
input. 
 
Benthic Habitat Mapping 

Benthic habitat mapping was primarily conducted to obtain the spatial distribution of 
seagrass and its substrate, enabling further analysis of percent cover and above-ground carbon 
stock (AGC) mapping. The following rules were applied: Dominated (i.e., Sg dominated, C 
dominated). If there is benthic type >80%, or <80% but other benthic types <20%. Addition (i.e., Sg 
+ BS). If the differences between benthic types is >20%. Mixture (i.e., Mix Sg Bs). If the difference 
between benthic types is <20%. 

The benthic habitat mapping classification scheme, based on these rules, resulted in 21 
distinct classes. However, this led to an imbalanced distribution of training areas and accuracy 
assessment samples across the classes. Additionally, during our experiments with the 21 classes 
for benthic habitat mapping, we observed that the accuracy of mixed composition classes tended 
to be very low and susceptible to misclassification into other classes with similar compositions or 
to the more dominant benthic classes. For example, mixed seagrass and sand were often 
misclassified as seagrass with sand or the seagrass-dominated class. Therefore, we reduced the 
number of classes by generalizing the classes based on the similarities in class composition and the 
misclassification rate between classes. As a result, we identified six different classes: Coral 
dominated (C dominated), Bare substrate dominated (BS dominated), Macroalgae dominated (M 
dominated), Seagrass dominated (Sg dominated), Bare substrate with seagrass (BS + Sg), and 
Mixed classes (Mix BS C M). 

The field data reclassified to the aforementioned six benthic habitat classes were used to 
train the RF algorithm. The number of trees (ntree) tested were 100, 200, and 300, while the 
function to determine randomly selected features employed the square root of all features instead 
of the logarithm to maximize the number of features involved in each iteration. The impurity 
function was set to the Gini coefficient. 

 
Seagrass Percent Cover and Aboveground Carbon Mapping 

Seagrass percent cover for each species was converted into aboveground carbon (AGC) 
values using the species-specific percent cover (PC) to AGC conversion formula developed by 
Wicaksono et al. (2021a). For species such as Cs and Tc, which did not have a species-specific 
formula, a common PC to AGC conversion formula described in Wicaksono et al. (2021a) was 
applied. The total AGC for each plot sample was calculated as the sum of the AGC values for all 
species within the plot. Subsequently, the field PC and AGC data were utilized as training areas for 
RF regression algorithm to model seagrass PC and AGC using various derivative WorldView-2 bands 
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as inputs. The ntree tested were 100, 200, and 300, and the square root of all features was used to 
determine randomly selected features. 

 
Accuracy Assessment 

The accuracy of the benthic habitat mapping results was evaluated using a confusion 
matrix, which yielded values for overall accuracy (OA), user's accuracy (UA), and producer's 
accuracy (PA) (Congalton & Green, 2019). The mapping of PC and AGC utilized the root mean 
square error (RMSE) and plot 1:1 between predicted and reference PC and AGC values. Field data 
that were not used to train the RF classification and regression models were employed for the 
accuracy assessment, ensuring unbiased evaluation of the results. The research flowchart is 
provided in Figure 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Research flowchart of mapping seagrass biodiversity indicators of Pari Island using multiple 
Worldview-2 bands derivatives 
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RESULTS  

Field Seagrass Data 
The summary of field data for benthic habitat, seagrass PC, and seagrass AGC mapping is 

provided in Table 2. The distribution of data for training area and accuracy assessment are covering 
similar range and comparable. 

 
Table 2. Summary of field seagrass data collected in the field. All data have been standardized to 2 m GSD 

of WV2 image. 

Benthic habitat classes 

Class Training area Accuracy Assessment 

BS + Sg 402 403 

Bs dominated 869 869 

C dominated 1047 1047 

M dominated 88 90 

Mix BS C M 167 168 

Sg dominated 1214 1105 

Total 3787 3682 

Seagrass PC Training area Accuracy Assessment 

Min (%) 0 0 

Max (%) 100 100 

Average (%) 52 51.8 

Std deviation (%) 20.3 20.6 

Total 1508 1516 

Seagrass AGC Training area Accuracy Assessment 

Min (g C m-2) 3.7 3.7 

Max (g C m-2) 35.5 35.5 

Average (g C m-2) 12.9 12.9 

Std deviation (g C m-2) 6.9 6.9 

Total 1508 1516 

 
 
Benthic Habitat Mapping 

The most accurate benthic habitat map was obtained from combined input bands using 
ntree 200 with 65.2%. However, the accuracy difference between using 100, 200, and 300 ntree is 
very small with 0.2% (Table 3). Compared to other input, the accuracy difference range between 
2.2% (with SR bands) to 10.7% (with PC bands). Table 2 also indicate that using more input bands 
deliver better benthic habitat mapping accuracy where combined inputs delivered the highest 
accuracy on all ntree scenarios. However, derivative bands of WV2 reflectance not necessarily give 
improvement to the mapping effort compared to the initial SR bands. In fact, SR bands produced 
the second best accuracy after the combined inputs and derivative information such as from band 
ratios, texture bands, and PC bands produced lower mapping accuracy. Furthermore, it is also 
evident that increasing ntree above 100 does not have any effect on the mapping accuracy and in 
our case the highest mapping accuracy came from ntree 200 in all inputs except SR bands. 
Nevertheless, the difference of accuracy between ntree is 1-2% only. 
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Table 3. Summary of accuracy assessment of benthic habitat mapping using various inputs 

Input 
ntree 

100 200 300 

SR bands 62.6 62.6 63.0 

Band Ratio 54.6 55.6 54.8 

Texture bands 61.9 62.5 62.4 

PC bands 53.9 54.5 54.1 

Combined inputs 65.0 65.2 65.0 

 
Figure 3 shows the spatial distribution of benthic habitat in the Pari Island based on the 

most accurate benthic habitat map (65.2%, combined inputs, ntree 200). The confusion matrix is 
provided in Table 4. Specifically for seagrass class (Sg dominated), the UA and PA are 65.2% and 
72.8%, respectively. The majority of misclassification of seagrass class are with BS + Sg, BS 
dominated, and C dominated. While the misclassification between seagrass and BS + Sg and BS 
dominated class can be addressed by the inclusion of seagrass of varying density in their class 
descriptor, the misclassification with C dominated class mainly due to the water turbidity issue. The 
misclassification between seagrass and C dominated mainly occurring in the water in reef flat and 
lagoon in the north western part of Pari Island (red polygon in Figure 3). This area is dominated by 
Ea species covered by epiphytes living in a soft substrate and relatively turbid water, hence the 
seagrass reflectance is darker, and thus, the reflectance of seagrass in this area become similar to 
the coral reef in deeper water such as in fore reef area and misclassified to C dominated. 
Meanwhile, the reef crest and fore reef area and deeper lagoon are correctly dominated by C 
dominated class despite some pixels also classified as seagrass (blue polygon in Figure 3). Despite 
some areas of seagrass in the northwestern being misclassified as C dominated class, the 
distribution of seagrass is still overestimated due to the pixels in the reef crest and fore reef being 
misclassified as seagrass. Pixel classified as Sg dominated, BS + Sg, and BS dominated were further 
used to perform seagrass PC and AGC mapping. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Benthic habitat classification using RF algorithm with ntree 200 using combined input (OA 65.2%). 
Red polygon shows the location where seagrass was misclassified as coral. Blue polygon shows the 
location where coral was misclassified as seagrass. 
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Table 4. Confusion matrix for the accuracy assessment of benthic habitat mapping 

Map class 

Reference 

Total 
UA  
(%) BS 

+ Sg 
BS 

dominated 
C 

dominated 
M 

dominated 
Mix BS C 

M 
Sg 

dominated 

BS + Sg 56 39 3 0 2 43 143 39.2 

BS dominated 136 654 42 16 73 124 1045 62.6 

C dominated 16 52 854 62 75 126 1185 72.1 

M dominated 0 2 0 1 1 2 6 16.7 

Mix BS C M 5 13 5 4 12 4 43 27.9 

Sg dominated 186 107 122 7 5 803 1230 65.3 

Total 399 867 1026 90 168 1102  
OA = 65.2% PA (%) 14.0 75.4 83.2 1.1 7.1 72.9 

 
 

Seagrass PC Mapping 
Similarly to benthic habitat mapping results, the most accurate seagrass PC mapping was 

produced from combined input using either 100, 200, or 300 ntree. The most accurate RMSE is 17.1%. 

Nevertheless, the difference between the lowest and highest RMSE between inputs and ntree is 

only 1.2%. Again, there is no substantial benefit in improving ntree beyond 100 in the seagrass PC 

mapping accuracy in all inputs (Table 5). In comparison to benthic habitat mapping, the variation 

in accuracy in seagrass PC mapping is negligible between inputs and ntree scenarios. 

 

Table 5. Summary of accuracy assessment of seagrass PC mapping using various inputs 

Input 

ntree 

100 200 300 

R2 
RMSE 

(%) 
R2 

RMSE 
(%) 

R2 
RMSE 

(%) 

SR bands 0.28 17.5 0.28 17.5 0.29 17.4 

Band Ratio 0.21 18.3 0.21 18.3 0.21 18.3 

Texture bands 0.31 17.3 0.31 17.3 0.31 17.2 

PC bands 0.22 18.2 0.22 18.2 0.23 18.1 

Combined inputs 0.32 17.1 0.32 17.1 0.32 17.1 

 

Figure 4 shows that the seagrass PC distribution is overestimated on lower percent cover. For 

instance, in pixels classified as BS dominated, the percent cover was predicted as 20 – 40%.  The 

higher seagrass PC mainly located near the shoreline with the highest predicted seagrass PC are 

located in the northern side of Pari Island, mainly consist of Ea species covered by epiphytes. The 

predicted seagrass PC values range from 14.9% to 88.4% with the average of 47.4 ± 9.9%. Meanwhile, 

the reference seagrass PC values range from 0% to 100% with the average of 51.8 ± 20.6%. Although 

the average difference between predicted and reference seagrass PC is only 4.4%, due to the much 

lower standard deviation value, the predicted seagrass PC did not comprehensively captured the 

variation of seagrass PC in the study area, especially in the very low and very high seagrass PC. The 

very low seagrass PC was overestimated and the very high seagrass PC was underestimated. 
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Figure 4. Seagrass PC map with 17.1% RMSE derived from combined inputs and RF regression with 
100 ntree 

 
 

Seagrass AGC Mapping 
The results of seagrass AGC mapping is consistent between input and ntree scenario (Table 

6). The most accurate map obtained from combined input with RMSE 5.0 g C m-2, but the RMSE 

difference between the most and least accurate result is only 0.6 g C m-2. The R2 between predicted 

and reference AGC is higher than those of seagrass PC. Furthermore, the difference between 

predicted and reference AGC is smaller than those in seagrass PC. The predicted AGC values range 

between 6.2 – 29.1 g C m-2 with average of 12.4 ± 4.1 g C m-2. In comparison, the reference AGC range 

between 3.7 – 35.5 g C m-2 and average of 12.9 ± 6.9 g C m-2. This is potentially because the reference 

seagrass AGC value per sample site to train the RF model and assess the accuracy of the resulting 

map is obtained from the AGC value from each species. This species-specific unique AGC values in 

return provide better variation when used to train the RF model. Furthermore, the seagrass AGC 

which is related to its biomass and LAI also a better proxy for the interaction of downwelling 

irradiance and the seagrass reflecting tissue in comparison to PC. 

 

 

 

 

 



 

199 

 

Pramaditya Wicaksono & Setiawan Djody Harahap / Geosfera Indonesia 8 (2), 2023, 189-205 

 

Table 6. Summary of accuracy assessment of seagrass AGC mapping using various inputs 

Input 

ntree 

100 200 300 

R2 
RMSE  

(g C m-2) 
R2 

RMSE  
(g C m-2) 

R2 
RMSE  

(g C m-2) 

SR bands 0.43 5.2 0.44 5.2 0.44 5.1 

Band Ratio 0.34 5.6 0.34 5.6 0.35 5.5 

Texture bands 0.45 5.1 0.45 5.1 0.45 5.1 

PC bands 0.36 5.5 0.36 5.5 0.36 5.5 

Combined inputs 0.47 5.1 0.47 5.0 0.47 5.1 

 

The seagrass AGC map still indicate an overestimation in pixels classified as BS dominated 

and high seagrass AGC was only situated in the northwestern part of the island dominated by Ea 

with epiphytes (Figure 5). The medium and high seagrass PC areas near the shoreline in other areas 

are having lower AGC than the Ea dominated beds due to their species composition mainly consist 

of smaller species such as Th and Cr. At similar PC value, bigger species such as Ea has higher AGC 

than the smaller species. This adds and provide better dynamics and variations in the predicted 

AGC values. In general, the map shows that lower seagrass AGC (mainly <10 g C m-2) tends to be 

overestimated, while the higher seagrass AGC, mainly above 22 g C m-2, tends to be underestimated 

(Figure 6). From the map, it is estimated that the study area store 27.9 ton C of seagrass 

aboveground biomass. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Seagrass AGC map with 5.0 g C m-2 RMSE derived from combined inputs and RF 
regression with 200 ntree. 
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Figure 6. Scatter plot between reference and estimated seagrass AGC (g C m-2) from combined 
input with RMSE 5.0 g C m-2 

 
 
DISCUSSION 

Using high spatial resolution satellite imagery is generally expected to yield high accuracy. 
However, this expectation does not necessarily hold true for seagrass mapping. Seagrass mapping 
poses significant challenges in remote sensing due to various factors. These include water column 
energy attenuation, low signal-to-noise ratio (SNR) for water bodies, the mixing of benthic cover, 
similarity in reflectance across benthic cover, complex spatial structures, and the dynamic nature 
of seagrass meadows. 

According to Wicaksono et al. (2022c), seagrasses exhibit monthly and seasonal growth 
patterns. This highlights that temporal resolution is as crucial as spatial, spectral, and radiometric 
resolution when it comes to mapping. Among the available multispectral satellite images in the 
market, WorldView-2, along with WorldView-3, stands out due to its high spectral and spatial 
resolutions. However, it is important to note that this option comes at a higher cost and faces 
challenges related to temporal resolution. Unlike resources such as PlanetScope, Sentinel-2, and 
Landsat, WorldView-2 lacks a consistent archive of time series data. This discrepancy in data 
availability between field data collection and image acquisition dates complicates the process of 
seagrass mapping. 

The WV2 imagery used in this research was obtained on October 9, 2021, while the field 
survey was carried out from late February to early March 2023. Although this is not a big concern 
for coral reef mapping, it could lead to misclassifications in benthic habitat mapping, particularly 
for seagrass. It might also contribute to higher RMSE values in seagrass PC and AGC mapping. It is 
important to note that the seagrass PC observed in the field during February and March 2022 might 
not align with what the WV2 image captured in October 2021. This discrepancy is evident, especially 
for smaller species like Th and Cr, where the field-measured aboveground biomass could be either 
greater or lesser than what the WV2 image recorded. 
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Another consideration is the GPS geolocation accuracy, which is approximately ±3 meters. 
This accuracy limitation could potentially lead to a spatial mismatch between the real-world data 
and the corresponding pixel in the WV2 image. Additionally, factors such as water turbidity can 
affect the assessment of seagrass habitat. High water turbidity, resulting in darker reflectance, 
might create an impression of higher biomass than actually presents in the field. Conversely, areas 
with lower seagrass cover situated on bright carbonate sand might appear less dense in the WV2 
image due to the dominant and reflective nature of the sand substrate. Furthermore, sub-pixel 
mixing of different benthic covers such as seagrass with macroalgae, sand with microbenthos, and 
areas with dead corals and rubble can alter the overall reflectance of seagrass as captured by the 
sensor. This indicates that several factors need to be carefully considered and adjusted for when 
interpreting seagrass-related data from the WV2 imagery. 

As a result, having a higher resolution, such as WV2, does not always result in higher 
mapping accuracy. The accuracy of our benthic habitat mapping aligns with previous 
achievements, but our classification scheme involves more complex classes, describing benthic 
composition rather than just dominant benthic cover classes (Wicaksono & Lazuardi, 2018; 
Wicaksono & Lazuardi, 2019; Ginting et al., 2023). Regarding seagrass PC mapping, our work's 
RMSE is comparable to that of Fauzan et al. (2017) and Fauzan et al. (2021) using Sentinel-2. 
However, for seagrass AGC mapping, our RMSE is notably higher than the work by Wicaksono et 
al. (2022c) using Sentinel-2 in Labuan Bajo. Yet, it falls within the range of accuracy obtained by 
Wicaksono et al. (2022a) study using WorldView-2 on Parang Island. In addition to the 
aforementioned issues, these variations in accuracy and RMSE can be attributed to the differing 
characteristics of seagrass meadows. Wicaksono et al. (2022a) highlighted that mapping seagrass 
in patchy and continuous meadow conditions presents distinct challenges. Indeed, due to its 
higher GSD, WV2 delivers more precise maps that can effectively map seagrass at a finer scale 
compared to PlanetScope, Sentinel-2, or Landsat. The RMSE and misclassification of WV2 are 
calculated for a 2 × 2 m area, providing better precision for handling variations compared to the 
GSDs of 3 × 3 m, 10 × 10 m, and 30 × 30 m for PlanetScope, Sentinel-2, and Landsat, respectively.  

Finally, our research has shown that a high spatial resolution image, represented by WV2 
in this study, can effectively provide information about benthic habitat composition and maps of 
seagrass PC and AGC with a level of accuracy similar to that published in previous works. However, 
direct comparisons are limited due to variations in input data, mapping methods, and habitat 
complexity. Nonetheless, our findings serve as a reference to highlight that increasing image 
resolution does not always lead to improved mapping accuracy. 

 
CONCLUSION 

The objective of this research is to utilize the integration of WV2 derivatives, field seagrass 
data, and RF classification and regression algorithms to map seagrass distribution, PC, and AGC as 
a seagrass biodiversity indicator, in optically shallow water surrounding Pari Island. Our results 
show that the most accurate benthic habitat map has 65.2% OA with the UA and PA of Sg 
dominated class is 65.2% and 72.8%, respectively. The misclassification of seagrass mainly with C 
dominated (water turbidity issue), BS + Sg, and Mix Sg BS class (both contain seagrass in their class 
descriptor). The seagrass PC mapping yielded the most accurate RMSE of 17.1% and the average PC 
is 47.4 ± 9.9%. For the seagrass AGC mapping the most accurate RMSE is 5.0 g C m-2, with the 
average PC is 6.2 – 29.1 g C m-2 and the study area is estimated to store 27.9 ton C of seagrass 
aboveground biomass carbon stock. All the most accurate results for all these biodiversity 
indicators were produced from combined inputs, showing that more input bands delivered better 
accuracy when using RF algorithm. The addition of ntree beyond 100 also generally do not provide 
accuracy improvement. We also found that WV2 derivatives such as band ratios, co-occurrence 
texture bands, and PC bands did not improve the accuracy of SR bands when used individually. 
Thus, for seagrass mapping, it is encouraged to use combined bands from the derivatives of the 



 

202 

 

Pramaditya Wicaksono & Setiawan Djody Harahap / Geosfera Indonesia 8 (2), 2023, 189-205 

 

SR bands to maximize the information input to train the mapping algorithm instead of using the 
derivative bands individually or use the derivative bands as the replacement of the initial SR bands. 
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