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INTRODUCTION  

 Indonesia is a country with a high level of vulnerability to natural disasters, specifically 
in areas of massive structural complexity (Triatmadja, 2011). Natural disasters such as floods, 
landslides, and earthquakes, cause loss of life, and property, as well as disruption of the order of 
events (Setyowati, 2019). Landslide is the most common disaster in the hilly regions of Indonesia. 
Therefore, the hazard level can be controlled through evaluation and zoning (Shano et al., 2020). 
Vulnerability, hazard and risk assessment are carried out to evaluate landslide at the regional 
scale (Feng et al., 2022; He et al., 2024; Pellicani et al., 2017; Nefros et al., 2023; Dotta et al., 2023). 
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ABSTRACT 
The destruction of houses and facilities by landslide causes deaths. In this 
context, the level of destruction and subjective description of the 
characteristics can be examined through landslide parts determination. 
Therefore, this study aims to determine potential landslide hazard zone and 
houses potentially affected. Global Navigation Satellite System (GNSS) and 
unmanned aerial vehicle (UAV) are morphometric surveys combined with 
surface morphodynamics to show potential hazard zones of landslide parts. 
Meanwhile, Data Elevation Model (DEM) is used to delineate relict landslide 
and the concept is verified by field observation and orthophoto. 
Morphometric measurements are collected at each slope gradient by GNSS 
and surface morphodynamics are investigated on the entire relict landslide 
area by direct observation and orthophoto data. The combination of 
morphometric and morphodynamic data describes hazard zone of relict 
landslide. In addition, the integration of orthophoto and landslide hazard 
zone data is used to determine potentially affected houses. This study was 
conducted on landslides 1 and 2 with zone classifications of very high, high, 
low and very low. The results show that there are different conditions and the 
most hazardous parts of landslides 1 and 2 are the foot and body, respectively. 
A total of 75 and 50 houses were potentially affected by landslides 1 and 2, 
respectively. Identification of hazard zones based on landslide parts 
determines the boundaries of the area affected. The addition of surface 
activity processes determines the level of hazard in each of parts, while the 
combination of morphometric and morphodynamic data shows landslide 
zone. 
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Field surveys using satellite imagery data are employed to identify hazard zone, while 
field data are obtained through measurement and observation (Soldato et al., 2017; Psomiadis et 
al., 2020; Yan et al., 2023). Coordinate and elevation data are obtained using Global Navigation 
Systems (GNSS) mapping tool (Xi et al., 2023; Huang et al., 2023; Wang et al., 2022). High-
resolution satellite imagery data LiDAR and InSAR are provided through advancements in remote 
sensing technology (He et al., 2023 & Amatya et al., 2021), while complete data are produced from 
field survey and remote sensing (Ghorbanzadeh et al., 2020 & Shan et al., 2023).  Landslide zone 
is identified using Unmanned Aerial Vehicles (UAV) and GNSS (Nikolakopoulus et al., 2023; 
Kyriou et al., 2022; Garnica-Pena & Alcanata-Ayala., 2021). Meanwhile, remote sensing and 
mathematical methods in the determination of landslide hazard zone (He et al., 2024 & Li et al., 
2020). 

To determine hazard zones, rainfall, geomorphological and geological aspects must be 
used based on the intensity and volume (D’Ippolito et al., 2023 & Rong et al., 2020). According to 
Alvioli et al. (2018) & Saenkang et al (2022), landslide occurrs due to cutting and vibration. The 
river at the foot of the slope, the road at the crown and foot, as well as the seepage on the slope 
triggered landslide (Kinde et al., 2024 & Nanehkaran et al., 2023). The combination of the 
variables is important due to the complexity of the research area and interaction (Thomas et al., 
2023 & Kamal et al., 2023). Landslide hazard identification is determined by house positions and 
materials (Zhang et al., 2024; Fariz et al., 2023; Shi et al., 2023). This showed the necessity to 
analyze slope conditions and process activities with the interrelationships. 

The Bompon Sub-watershed of Bogowonto Watershed is located within Magelang 
Regency with areas dominated by steep slopes. The location possesses 39 landslide scars with 
residential houses (Ramlah et al., 2020). Previous studies assessed the landslide hazard to 
determine the zone of landslide hazards based on morphological variables (slope and 
geomorphological processes), climatic variables (rainfall) and slope material. As a new insight, in 
this study, landslide hazard zone was determined based on morphological and climatic variables 
(rainfall) as well as slope material including landslide zone and part of landslide. The selection of 
these variables is based on the consideration of conducting several research on the regional scale. 
The recurrence events are characterized by bodies and many settlements are found in relict 
landslide. Therefore, this study aims to determine potential landslide hazard zone as well as 
houses potentially affected.  
 
METHODS 
Study Area 

This study was conducted at landslide 1 and 2 sites in Margoyoso Village, Salaman 
Subdistrict, and Magelang District (Figure 1). The location was in the upstream area and 
transition zone of Sumbing and Merapi Volcano dominated by steep slopes > 40%.  Surface 
material is clay which is a deposit of old and young Sumbing volcanic ash.  Subsurface materials 
are deposits of Kulonprogo Volacano weathered due to the magma activity of Sumbing Volcano. 
Intensive weathering causes the material to be particularly thick with a depth of > 30 m. The 
combination resulted in relict landslide identified in the entire watershed Bompon area (Ramlah 
et al., 2020).
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A total of 2 relict landslides were selected due to surface process activity and the presence of 
settlements. Meanwhile, new formation was found in landslide 1 showing material movement.  

Figure 1. Study Area 

 
Selected Relict Landslide as Object Research  

The first step of the research was to identify landslide traces andidentification is based on 
morphological analysis of the slope using Data Elevation Model (DEM). DEM data was obtained 
from the Geospatial Information Institution (BIG) 
https://tanahair.indonesia.go.id/demnas/#/demnas and data from BIG has a resolution accuracy 
of 8 meters. Subsequently, DEM was analyzed using ArcMap to generate the slope and hillside. 
The analysis of data produces surface topography describing the shape of the basin (Azmoon et 
al., 2022). In addition, the basin is identified as a former and relict landslide, as showed in Figure 
2. 

The second step is to determine landslide site as the object of research. The selection is 
based on the existence of settlements in the former landslide area and the current ground 
movement condition. Landslide sites have settlements and the basis of determining the object 
depends on the presence or absence of ground movement in the scars area. Information was 
obtained from a rapid survey of the research site and interviews with the local community. The 
selected landslide scars are those with and without soil movement obtained by comparing the 
risk of houses affected. 

 
 
Data Collecting 

Morphometric survey is carried out to determine landslide parts before measuring each 
slope degradation. GNSS with high accuracy is selected due to data required (Xi et al., 2023; Huang 
et al., 2023; Wang et al., 2022). The subsequent step was to photograph the selected landslide 
area using the UAV method to identify boundaries and surface morphodynamic activity (Sun et 
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al., 2024; Jacobs et al., 2017). Houses in the selected landslide site are delineated using an 
orthophoto, such as Phantom 4 Drone (Li et al., 2020). 

In the selected relict landslide, field observation was used to obtain morphodynamic data 
and human activity. On the track extending from the opposite side of landslide boundary with a 
width of 100 m, the traverse method used was accomplished by walking zig-zag. During the 
traverse survey, the information and human activities observed were recorded to support 
orthophoto data for zone determination (Sun et al., 2024; Jacobs et. al, 2017). The soil moves away 
within the depletion zone and deposited in accumulation zone (Orgita, 2017). 

 
Data Analysis 

The crown, scrap, body, and foot parts of landslide have different characteristics. The 
crown is the highest part, while scrap is a cliff formed due to soil movement. In addition, the main 
body is landslide field covered by material and the foot is the flat lower part of the slope (Cooper, 
2007). Based on landslide parts characteristics, identification can be carried out by elevation data 
to identify the higher and the lower parts of landslide. 

Morphometric data is analysed by ArcMap to create elevation and contour data. 
Meanwhile, UAV data is processed by Agisoft Software to create an orthophoto. Data aim to verify 
and justify the boundary of landslides 1 and 2 (Akcay, 2015). Orthophoto of landslides 1 and 2 
are entered into ArcMap and combined with elevation and contour data. Therefore, parts of 
landslide can be identified and restricted in ArcMap using the information. 

Morphodynamic data are plotted according to position in the field with the coordinates 
obtained by observation. The last analysis is determining landslide potential and house hazard 
zones. The level of potential hazard zones is based on the characteristics of landslide parts 
(Gonzales, 2018) and morphodynamic information, as described in Table 1. 

 
Table 1. Classification of Potential Hazard Using Morphodynamic and Morphography Data 

Landslide Potentially 
Hazard Level 

Morphodynamic 
Information 

Morphometric Data 

Level I (Very High) New Landslide (smaller size 
than the previous landslide) 

Sloping-Extremely Steep 

Gully  
Fractures  
Springs  
Seepage  

Level II (High) Fractures Sloping-Moderately Slope 
Gully  

Springs  
Seepage  

Level III (Low) Rill erosion Gently Slope-Flat 
Springs  
Seepage  

Level IV (Very Low) Dense Vegetation Gently Slope-Flat 
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The classification of the slope is based on Van Zuidam, while the measurement and 
collection of data use high-resolution tools. However, the determination of potential hazard zones 
is semi-quantitative and guaranteed to be similar due to differences in material and climate 
conditions. 

 

Figure 2. Research Flow Chart 
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RESULTS  

There are 9 landslide scars in the research location using DEM (Figure 3). This result is 
based on the basin interpretation of height difference generated from DEM analysis with 
reclassify, slope, and hillside methods. Identification of landslide scars is the basis for determining 
the research object. Additional data from a rapid field survey and interviews with the surrounding 
community finally selected landslides 1 and 2 as the object of the study.  

 

Figure 3. Landslide Identification of DEM Map 
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UAV Photography was conducted on landslides 1 and 2 to identify the actual boundary 
and analyze the new ground movement. Meanwhile, the UAV Orthophoto was processed into DEM 
and DSM with higher accuracy. DEM and DSM can be analyzed clearly and represented in an actual 
map of landslides 1 and 2. Based on the boundary, the area of landslides 1 and 2 are 11,14 Ha and 
5,05 Ha, as presented in Figure 4. 

 

Figure 4. Actual Map of Landslides 1 and 2 

The actual Map shows 4 (four) new ground movements in the area. In landslide 2, there 
is no new ground movement and an orthophoto is used to identify houses. Meanwhile, there are 
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50 and 75 residential houses scattered in landslides 1 and 2 areas. Figure 5 shows the map image 
of the distribution of residential houses. 

 

Figure 5. Distribution Map of Landslide 1 and Landslide 2 Houses 

The results of the field survey and DEM from orthophoto are used to determine landslide 
parts, as shown in Figure 6 and Figure 7. Landslide parts are represented in 2D and 3D maps 
using contour data obtained from morphometric survey.  
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                 Table 2. Parts of landslides 1 and 2 based on Morphometric and Morphodynamic Data 

Landslide 
Elevation (meters 
above sea level) 

Slope (0) Morphodynamic 
Parts of 

Landslide 
Landslide 1 473 1 - Crown 

 473 33 Rill erosion Scarp 
 466 12 Fractures Main Body 
   Gully  
 459 17 New Landslide 

(smaller size than 
the previous 

landslide) 

Foot 

   Fractures  
   Gully  
   Springs  

Landslide 2 460 3 - Crown 
 447 8 Gully Main Body 
 422 4 Gully Foot 

 

 

 

 

 

 

 

Figure 6 (a). 2D map of landslide 1, (b). 3D map of landslide 1 

 

 

 

 

 

 

 

Figure 7 (a). 2D map of Landslide 2, (b). 3D Map of Landslide 2 

(a) 

(a) 



 
 

185 
 
 

R. Ramlah & Redo Saputro / Geosfera Indonesia 9(2), 2024, 176-192 

 

Landslides 1 and 2 areas have different conditions based on the cross-section. The pile of 
material in landslide area 1 is mostly dominant in the main body and has not completely fallen to 
the foot. The cross-section of landslide 2 area shows that the slope moves down from the crown 
to the foot. The sloping condition of landslide 2 shows that landslide material has fallen to the 
foot. The materials in landslide 1 caused the main body of landslide 2 to be thicker and looser. 
Figure 8 shows the map of potential hazard zone of landslides 1 and 2. 

 

Figure 8. Map of Landslide Risk Zone 1 and Risk of Houses in Landslide 1 
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Figure 9. Map of Landslide Risk Zone 2 and Risk of Houses in Landslide 2 

DISCUSSION 

The description of landslide parts has been elaborated and classified by Cooper (2007). 
Each landslide consists of 20 parts divided into crown, main scarp, top, head, minor scarp, main 
body, foot, toe, tip, surface of rupture, surface of separation, displaced material, zone of depletion, 
zone of accumulation, depletion, depletion mass, accumulation, flank, and original ground 
surface. However, landslides 1 and 2 do not contain all parts. The incomplete landslide process, 
as well as morphodyanamic and human activities lead to the normal shape (Table 2). Landslide 
parts of the two areas are different, as reported by He et al. (2024) where the cutting slope 
changes the slope gradient. According to Nikolakopoulus et al. (2023), mass movement and 
erosion of the body caused reactive landslide. This result also contributes to identification of 
hazard zones at relict landslide and scale. The data analysis and field observations show that the 
scarp is part of landslide with the most potential (Tiwari et al., 2018), sequentially starting from 
the crown and main body (Amin et al., 2022). This is because the scarp has a steep slope and open 
soil conditions with low stability (Ichsandya et al. 2022) The slope becomes the benchmark for 
determining hazard zone in landslide area (Dotta et al., 2023). However, this condition does not 
occur in landslides 1 and 2. Since the slope of the scarp at landslide 1 is 33o with an interval 
elevation of 7 m, the area is not potential hazard (Figure 10).   
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Figure 10. Landslide Hazard Risk Concept on Landslide Sections 

According to orthophoto analysis, DEM, and field observation in landslide 1, potential 
hazard was discovered in the main body until the foot (Šilhán, 2021). In landslide 2 area, the 
highest potential is at the foot and the difference shows the accumulation and depletion zones 
considered in determining the risk.  

The feature element from the perspective of geomorphology is the soil (material) of the 
main body (Van Tien et al., 2023). The accumulation of material that has not completely collapsed 
to the foot of the slope increases the size. The accumulation and large slope angle caused the main 
body to be unstable (He et al., 2023). However, field observations and previous research by 
Ramlah et al. (2020) in the Bompon watershed showed that the material accumulation is going 
to fall due to triggering factors. The formation of a gully causes the movement of different 
materials from the main body. This is an indication of slope stability since material and 
morphodynamic affects landslide activity in determining potential hazard zones.  

Volume is an important parameter for determining hazard of landslide-affected houses 
(Li et al., 2020). Meanwhile, Faris et. al. (2023) analyzed landslide-affected houses based on the 
distance of the crown from the depletion and accumulation zones. In this study, the determinant 
is based on the position of houses in each part of landslide previously determined as potential 
level (Figure 9). Potential hazard of houses in relict areas are based on the distance from the scarp 
which is the most dangerous part (Tiwari et al., 2018). 

 
 
CONCLUSION 

In conclusion, a total of 9 relict landslides were identified at the research location. The 
results of DEM, DSM, and UAV photographing showed that landslides 1 and 2 had 4 and 0 cases, 
respectively. According to the orthophoto, there were 125 residential houses, comprising 75 and 
50 in landslides 1 and 2 areas, respectively. These houses had an enormous potential hazard 
following the occurrence of a new landslide. In landslide 1, there was a former scar from the 
previous process observed directly in the field, and from the cross-section of the pile of materials. 
This area was dominantly in the main body of landslide and did not completely fall to the foot. In 
landslide 2, there was a gentle slope from the crown to the foot as reported by the condition. 
According to morphometric survey, orthophoto analysis, DEM, and field observation in landslide 
1, the most at-potential hazard part was the main body and foot. In landslide 2, the highest 
potential hazard part was at the foot. The difference showed that the accumulation and depletion 
zones were considered in determining potential hazard. Meanwhile, the accumulation of 
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landslide material caused the size of the main body to be larger and unstable. In landslide 1, the 
highest potential hazard of houses was at the foot, while the body and crown had the greatest 
impact in landslide 2. 
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