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INTRODUCTION  

 The planet is currently undergoing global warming, which is causing weather changes. 
Weather variations can have an impact on water quality, which in turn has an impact on marine 
ecosystems (Henson et al., 2016). El Niño Southern Oscillation (ENSO) is a weather change 
phenomenon that has an impact on water quality. El Nino influences Upwelling in waters (Satar 
et al., 2023). Upwelling is the upward migration of nutrient-rich deep water with a low 
temperature to the surface (Umasangaji & Ramili, 2021). Wind-driven coastal upwelling is a 
major contributor to physical, biogeochemical, and biological variability in the vicinity of land-
sea interactions (Jacox et al., 2018). 

Upwelling has a significant impact on marine biogeochemistry, water quality dispersion, 
and climate change (Katlane et al., 2023). The relation between oceanographic conditions and 
climate change is determined using oceanographic parameters such as chlorophyll-a (Chl-a) and 
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 ABSTRACT 
Global warming and associated weather changes, notably the El Niño 
Southern Oscillation (ENSO), significantly impact marine ecosystems by 
altering water quality parameters such as chlorophyll-a (Chl-a) and sea 
surface temperature (SST). These changes are crucial in understanding the 
biogeochemical and ecological dynamics of marine environments, especially 
in regions affected by upwelling. This study aims to monitor upwelling events 
on Satonda Island, a volcanic island with unique central lake and status as a 
protected area using remote sensing. Utilizing Landsat-8 imagery and 
machine learning regression techniques—Random Forest (RF), Support 
Vector Machine (SVM), and Classification and Regression Tree (CART)—this 
research evaluates the water quality in Satonda waters over a decade (2013–
2023). The RF method emerged as the most accurate in estimating Chl-a and 
SST, indicating its efficacy in monitoring marine ecosystems with the result 
(RMSE = 0.309 and 0.274). The analysis reveals seasonal upwelling patterns, 
characterized by decreased SST and increased Chl-a concentration, with 
peaks varying annually between June and November. This study highlights 
the crucial role of remote sensing and machine learning in monitoring the 
effects of climate change on marine biodiversity. It provides valuable insights 
into the temporal dynamics of upwelling in the shallow waters of Indonesia. 
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sea surface temperature (SST) (Antoni et al., 2019). Chlorophyll-a is a sign of water fertility 
because it contains a lot of phytoplankton, which helps with photosynthesis in water (Sari et al., 
2021). Phytoplankton are vital to the ocean carbon cycle and ecological change. Chl-a is highly 
susceptible to climate change at many scales. At the same time, sea surface temperature (SST) is 
critical for tracking and comprehending numerous marine and atmospheric phenomena across 
space and time (Jang & Park, 2019). When the upwelling conditions occur, sea surface 
temperatures fall, dissolved oxygen falls, and nutrients rise, resulting in an abundance of 
phytoplankton. As a result, Chl-a and water temperature must be monitored. 

Remote sensing technologies, like those mentioned by Lakshmi et al. (2023); Mohebzadeh 
et al., (2020), help monitor water more efficiently and cost-effectively. They allow us to use Chl-a 
remote sensing to assess ecological impacts over specific periods (Free et al., 2021). However, 
satellite detection of Chl-a concentration estimates surface levels but cannot accurately measure 
primary (Manzar Abbas et al., 2019; Rahman et al., 2019). Temperature variations also affect 
aquatic life due to atmospheric processes and land proximity, causing surface temperatures to 
change significantly over time (Kniebusch et al., 2019). Despite advances in remote sensing and 
machine learning for monitoring marine ecosystems, predicting climate impacts such as El Niño's 
effect on upwelling and marine life remains challenging. Remote sensing helps estimate ocean 
Chl-a, but it only provides a partial view of marine ecosystems, and limited data availability can 
affect prediction accuracy (Efriana et al., 2024; Hedley et al., 2016). The ocean's complexity, 
influenced by weather and chemical processes, makes modeling even more complex. Moreover, 
the variability in upwelling events across different marine areas adds another layer of difficulty 
(Dabuleviciene et al., 2020). Addressing these issues requires cooperation to improve remote 
sensing techniques and ensure we have reliable data for model validation and refinement. 

Several studies by Ampou et al. (2020); Katlane et al. (2023); Welliken et al. (2018) which 
utilized MODIS imagery and the Google Earth Engine for monitoring waters, identified significant 
seasonal variations in Chl-a concentrations, with notable peaks during periods of lower sea 
surface temperatures between May and September. This observation underscores the critical 
relationship between oceanic temperature variations and marine productivity, as influenced by 
climatic and environmental conditions. However, due to the current spatial resolution of 250 m 
× 250 m, there are limitations in accurately capturing fine-scale variations and features within 
the landscape. This lower resolution may result in losing crucial details, especially in areas with 
complex land cover patterns or dynamic environmental processes. However, In general, it is not 
as critical in the study of oceans to have much detailed land cover data about areas where there 
are uniform cover conditions compared to places where the cover types are pretty diverse and 
changing frequently compared with terrestrial environments or coastal regions characterized by 
varying types of coverage tend to be heterogeneous, possessing remarkable characteristics. 
Homogeneous water bodies may require less detailed data when considering lower spatial 
resolutions (Schourup-Kristensen et al., 2021). Specifically, in marine science research, the 
accuracy of analysis or findings is less likely to be affected by the sacrifice of details in such areas, 
such as reduced maximum spatial resolution (Radoux et al., 2020). In contrast, coastal regions 
have complex interactions between sea/ocean and land, requiring high resolution for studying 
marine ecosystems, pollution effects on those ecosystems, and other things happening within 
them. 

Building upon the insights from previous research, this study aims to further explore and 
refine the monitoring of marine ecosystems through advanced remote sensing and machine 
learning techniques, including address detail gaps by priotizing the use of Landsat 8 over MODIS, 
Although Landsat data is available every 16 days, with research locations that focus on shallow 
water, it is better to use more detailed imagery, which allows for more detailed observations of 
land features and environmental parameters. By utilizing Landsat-8 more extensively, the study 
seeks to capture finer nuances in the water quality around Satonda Island, particularly during 
upwelling events. These events can be spatially localized and may have significant impacts on 
local marine ecosystems, but their finer-scale effects might be missed or underestimated when 
using lower-resolution imagery like MODIS. Therefore, by leveraging Landsat-8's superior spatial 
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resolution, the study aims to fill these spatial detail gaps and provide more precise assessments 
of water quality dynamics in the study area. 

 
METHODS 

Study Area and Data 

Indonesia is known for its large archipelagic landscape. The country has one of the richest 
marine habitats in the world. Satonda Island is the exclusive feature of many islands, like a 
volcanic island in the center of the Flores Sea (Figure 1). One of its characteristic geological 
features is a striking lake, which lies at its central position and has developed into a major tourist 
site. This is further accentuated by the fact that Satonda Island is a National Park, which only goes 
on to depict a nation's dedication in protecting the nation's natural heritage (Decree of the 
Minister of Environment and Forestry of the Republic of Indonesia, 2022) 

The fact that a large percentage of the waters of Satonda Island fall within a protected 
area makes it of great significance to monitor the waters of Satonda Island. This is so because the 
quality of the waters plays a great role in determining the health and diversity of the biota that 
lives underwater and is near Satonda Island. The guarantee is that the quality of water should be 
considered paramount for maintaining an ecological balance, which is, in turn, a platform that 
supports and sustains the rich marine life in these waters. This goes a long way in the 
conservation of natural biodiversity and also in ensuring the island remains a source of attraction 
to visiting eco-tourists. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Study site: (a) Indonesia; (b) Dompu, West Nusa Tenggara; and (c) Satonda Island 

 

This study used 190 stations of in situ data to validate the use of algorithms on Landsat 8 
imagery that launched on February 11, 2013. This satellite consis of two sensors, namely the 
Operational Land Imager (OLI) sensor and the Thermal Infrared Sensor (TIRS), with a spatial 
resolution of 30 meters (visible, NIR, SWIR), 100 meters (thermal), and 15 meters (panchromatic) 
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(USGS, 2014). Then use image data from 2013–2023 to see the upwelling that occurs in Satonda 
waters. 

 
Classification and Accuracy Test 

Data processing carried out on Google Earth Engine (GEE) (Gorelick et al., 2017) with two 
data types: in situ data in the form of Chl-a concentration values and sea surface temperature at 
190 station points. Data was collected on Satonda Island from April 29, 2023, to April 2, 2023, 
using the AAQ-RINKO instrument. In situ data is divided into Training (70%) and Validation 
(30%). Training data were used to determine the algorithm's performance, while validation data 
were used to test its performance. Then there is secondary data, Using Landsat-8 OLI satellite 
imagery to estimate Chl-a concentrations; the Landsat-8 data used is already level 2, so there is 
no need for radiometric correction and calibration, while for water surface temperature and 
using Landsat-8 satellite imagery TIRS, calibration, and radiance correction are needed. The 
image processing process also carried out fog and sunscreen filtering, however the cloud removal 
process cannot be carried out, so several parts of the water in the Landsat 8 image were recorded 
by clouds. The Landsat data used is from 2013–2023.  
 

 

Figure 2. Research Framework  

 
The estimation for the Chl-a parameter uses the algorithm (Ha et al., 2017), there was the 

band combination formula = [Band 1/Band 4]. Meanwhile, sea surface temperature estimation 
uses an algorithm, specifically the band combination formula = [Band 10, Band 11]. After 
determining the band combination, perform machine learning regression with data that has been 
divided into training data. We tested three machine learning regressions, namely Random Forest, 
Support Vector Machine, and Classification and Regression Tree. Then accuracy was tested with 
in situ data which has been divided into testing data. The best machine-learning results was used 
to estimate Chl-a and temperature. Chl-a and temperature data were processed for 10 years so 
that the condition of the waters can be known when upwelling occurs in Satonda waters. 

 
Machine Learning Regression 

Random Forest (RF) 
The random forest algorithm was developed in 2001, which has been used  particularly for 

classification and regression. This algorithm showed exceptional performance, indicated by the 
number of variables which significantly higher than the number of observations, and it can handle 
large data dimensionality and multicolinearity while remaining quick and immune to overfitting. 
It is, however, affected by the sample design (Belgiu & Drăguţ, 2016). 
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Support Vector Machine (SVM) 

Simulations of several parameter combinations were carried out to test the accuracy of 
the SVM, where the SVM also looked for the maximum marginal Hyperplane to determine 
separate data classes (Mountrakis et al., 2011). Furthermore, characteristic of SVM is increasing  
numbers of classes can reduce the level of accuracy. 

  
Classification and Regression Tree (CART) 

The CART was employed to classified response variables consisting nominal, ordinal, or 
continuous. This algorithm determines variables and thresholds in classifying data. The 
classification tree is formed by the CART algorithm if it has a categorical scale on the response 
variable. Meanwhile, a regression tree is produced if the response variable is continuous data 
(Zacharis, 2018). 

 
Data Analysis  

This study's data analysis is descriptive, taking into consideration both spatial and 
temporal elements. Then, using in-situ data, statistical analysis is used to validate the algorithm. 
R-square and Root Mean Error Square (RMSE) were utilized in this investigation (Zhang et al., 
2020).  

𝑅𝑀𝑆𝐸 = √
∑ (𝑋𝑒𝑠𝑡𝑖,𝑖−𝑋𝑚𝑒𝑎𝑠,𝑖)2𝑁

𝑖=1

𝑁
    (1) 

𝑅2 =
1

2
 ∑ (𝑋𝑒𝑠𝑡𝑖,𝑖 − 𝑋𝑚𝑒𝑎𝑠,𝑖)

2𝑁
𝑖=1     (2) 

Explanations, 
N: number of data 
Xmeas: value from in situ data, 
Xesti: the value of the data obtained from the estimation by the image 
 

The connection between observed and expected values is measured by R squared (R2). R-
square helps us know how well the overall regression model explains variations in the data. The 
formula for calculating R2 is given below as equation (1). R-square values vary from 0 to 1. The 
closer the value is to one, the more precise the data collected. On the other hand, RMSE helps find 
out how accurate the model estimates are in predicting actual values in the same data units. The 
RMSE value, is closer to one; the larger it is, the more erroneous the data. The best results are 
obtained when the value is close to zero. 
 

 

RESULTS AND DISCUSSION 

Chl-a and SST derived maps based on Machine Learning  
Chlorophyll (Chl-a) concentrations and Surface Temperature (SST) during upwelling 

periods can vary depending on water depth, wind speed, and nutrients available in those waters 
(Suhermat et al., 2021; Wirasatriya et al., 2018). Upwelling is a process in which water masses in 
the ocean are more profound, but what happens in the sea will undoubtedly affect the 
surroundings, including shallow waters. This phenomenon is usually rich in nutrients, such as 
nitrates and phosphates, rising to the surface (McDowell & Hamilton, 2013; Katlane et al., 2023). 
The rising water mass brings these nutrients to the sea surface, which can then support 
phytoplankton growth, including algae containing Chl-a. Meanwhile, sea surface temperatures 
are cooler than in the surrounding area. 

 The Chl-a and sst parameters require an algorithm to figure out their concentration value 
when monitoring water quality via remote sensing. Monitoring carried out using remote sensing 
of course depends on the image quality. As a consequence, the accuracy of the algorithm and 
satellite photos must be tested. Chl-a is used as a marine fertility indicator to assess the 
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concentration of phytoplankton in a body of water.  This study used the chl algorithm from Ha et 
al. (2017). This machine learning algorithm was employed through its paces using three machine 
learning regressions: random forest, support vector machine, and classification and regression 
trees. On Satonda Island, the best accuracy test results were utilized to estimate Chl-a. 

 

     Figure 3. Chl-a derived maps based on Machine Learning: a) Random Forest b) SVM c) CART 

Based on the results of three accuracy tests conducted on machine learning regression using the 
Chl-a algorithm, Random Forest demonstrates superior performance to other machine learning 
algorithms. The Random Forest method exhibits a broader range when juxtaposed with the 
outcomes obtained from alternative machine learning algorithms (Figure 3). In Satonda waters, 
the Chl-a concentration ranges from a minimum value of 0.058 to a maximum of 0.301. Analysis 
of the random forest accuracy tests using in-situ training data yields an R-square value of 0.365 
and an RMSE value of 0.124. In contrast, employing data validation division indicates an R-square 
of 0.137 and an RMSE of 0.309. These findings suggest that the RF machine learning approach 
outperforms other methods (Table 1).  The R-Square value is indeed moderate. However, the 
accuracy of this result shows that this method can use the data. This finding is in line with 
previous studies by Karimi et al. (2022) that found chl-a concentration is R= 0,32 in Western Coast 
of South Sulawesi-Indonesia during the Rainy Season and RMSE = 1.12  in a shallow freshwater 
Chitgar lake, northwest of Tehran city. 

The outcomes obtained from alternative machine learning techniques reveal that the 
Classification and Regression Trees (CART) method achieved accuracy test scores on the training 
dataset of R-square 0.093 and RMSE 0.142, and on the testing dataset of R-square 0.019 and RMSE 
0.321. Conversely, the Support Vector Machine (SVM) method displayed the least favorable 
performance, with accuracy test scores on the training dataset of R-square 0.043 and RMSE 0.324, 
and on the testing dataset of R-square 0.017 and RMSE 0.152. Between these two methods. When 
analyzing data variations across the spectrum, CART shows more significant variability compared 
to SVM, indicating the CART method is better than SVM. The results of this research can be used 
as a reference method for estimating chlorophyll in Indonesia's shallow water areas. This is 
because the data built on the model uses direct field data surveys. 
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Table 1. Chl-a accuracy test results with a machine learning algorithm on Landsat-8 OLI.  

Machine Learning Algorithm 

Training Testing 

RMSE R-Square RMSE R-Square 

Random Forest 0.124 0.365 0.309 0.137 

Support Vector Machine 0.324 0.043 0.152 0.017 

Classification and Regression 0.142 0.093 0.321 0.019 

 

On the other hand, the sea surface temperature parameter functions as an indicator that 
plays an important role in the growth conditions of marine biota (Androulidakis & Krestenitis, 
2022; Sari et al., 2021). Machine learning regression random forest, support vector machine, and 
classification and regression tree methods are all included in the algorithm used to predict the 
temperature in Satonda waters. The precision was assessed using in-situ data on sea surface 
temperature in Satonda coastal. 

 

      Figure 4. SST derived maps based on Machine Learning: a) Random Forest b) SVM c) CART 

The findings from three machine learning regression analyses conducted on sea surface 
temperature (SST) characteristics indicate that Random Forest emerges as the most effective 
technique. Random Forest exhibits a broader range of SST estimation results than other methods 
(Figure 4). Specifically, the data reveal a detected temperature range with a minimum value of 
29.89 and a maximum value of 30.41 using the Machine Learning RF method. Detailed 
comparisons in Table 2 demonstrate RF's superior performance over SVM and CART, with a 
Training R-square value of 0.411 and an RMSE of 0.180. The testing dataset corroborates these 
findings, revealing an R-Square testing result value of 0.30 and an RMSE of 0.27. These results 
affirm the effectiveness of the Random Forest machine learning approach in SST estimation on 
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Satonda Island. This finding is in line with previous studies by  Liu et al. (2021) and  Dyba et al. 
(2022) that found estimation of SST is (RMSE= 1.85 and R-Square = 0.95) in Arid Northwest China 
Using Landsat Satellite Images and also in lakes in north Poland with the result (RMSE = 1.66 and 
R-Square = 0.95).  

The comparative analysis reveals notable disparities in the results obtained from SVM and 
CART methods. The performance metrics of CART demonstrate similarities to those of the RF 
method, with R-square values of 0.169 and 0.034 and RMSE values of 0.206 and 0.270, 
respectively, on the training and testing datasets. In contrast, SVM exhibits relatively poorer 
performance on the training and testing datasets, as evidenced by R-square values of 0.031 and -
0.000004 and RMSE values of 0.226 and 0.287, respectively. These findings underscore CART's 
superior performance following RF while highlighting SVM's comparatively inferior performance. 

          Table 2. SST accuracy test results with machine learning algorithm on Landsat-8 TIRS 

Machine Learning Algorithm 

Training Testing 

RMSE R-Square RMSE R-Square 

Random Forest 0.180 0.411 0.274 0.030 

Support Vector Machine 0.226 0.031 0.287 -0.000004 

Classification and Regression 0.206 0.169 0.270 0.034 

 

Upwelling on Satonda Coastal From 2013 to 2023 

Upwelling occurs when deeper ocean water ascends to the surface, typically cooler and 
nutrient-rich (Rutledge et al., 2024). This phenomenon is driven by forces such as wind, the 
Earth's crust, and the Coriolis effect, which push deeper water towards the surface. While 
upwelling primarily manifests in the deep sea, its effects extend to surrounding areas, including 
shallow waters (Bakun et al., 2015). Upwelling change affects the life of marine biota. From the 
accuracy results of the three machine learning algorithms tested, it was found that the best 
algorithm was a random forest (Table 2) . Thus, the Random Forest algorithm was used to 
estimate water quality parameters Chl-a and Sea Surface Temperature (SST) on Satonda Island 
from 2013 to 2023 (Figure 5). 

 

       Figure 5. Timeseries Chlorophyll-a and Sea Surface Temperature (SST) from 2013 to 2023 
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There is no definitive answer on how much increase in chlorophyll-a and sea surface 
temperature occurs during upwelling, as this can vary greatly depending on location, time of day 
and local environmental conditions. Stronger upwelling may increase chlorophyll-a and more 
significant changes in sea surface temperature than weak upwelling. The upwelling phenomenon 
in Satonda Island can see the results of Chl-a and SST in the last 10 years. From the graphic results 
(Figure 5), it can be seen that the peak of upwelling in Satonda Coastal is different every year. 
However, from ten years of data, upwelling occurs in Satonda waters between June and 
November. In 2014, the peak of upwelling occurred in June; in 2015, it occurred in July. Then, in 
2017, the peak of upwelling occurred in September. In 2019, it occurred from November to 
February 2020. Next, there was a peak of upwelling in August 2022, and in 2023, there was a peak 
of upwelling in September, starting until October 2023.  

In the last ten years, the average value of chlorophyll concentration was 1.32 mg/m−3 with 
the lowest value reaching 1.28 mg/m−3 around May - June, and the highest value for chlorophyll 
concentration was 1.36 mg/m−3 around December - March. Meanwhile, the average value of SST 
concentration is 30.12°C with the lowest value reaching 30.118 °C around October – January, and 
the highest value for SST concentration is 30.128°C round June – August. This finding is in line 
with previous study by Simanjuntak & Lin (2022) that found chlorophyll concentrations can 
reach more than 1.5 mg/m−3, occurring in August, while the minimum SST, lower than 25 °C, also 
appears in August along the South Coast near the Indian Ocean. The chlorophyll concentration 
results were similar to the research results but occurred in different months due to regional 
differences and the influence of seasonal winds. Meanwhile, research  by Sari et al. (2022) found 
different responses from surface chlorophyll and peak SST in western Sumatra following wind 
speed patterns. The chlorophyll concentration and SST values in the southern part of Sumatra 
Island experienced upwelling in June, July, and August, while in the central part of Sumatra Island, 
this occurred in September, October, and November. The northern part of Sumatra Island 
strongly correlates with January, February, and March. Several factors, including location, wind 
direction and speed, and depth of topography, influence upwelling.  

 

CONCLUSION 
In this decade-long study on Satonda Island, imagery from Landsat-8 and machine-

learning techniquees were used to monitor changes in water quality indicators of the island, such 
as chlorophyll-a (Chl-a) and sea surface temperature (SST). This is characteristic of an upwelling 
phenomenon, in which conditions occur under which cool, nutrient-rich water is lifted to the 
surface in marine environments. Among these algorithms, Random Forest (RF) was the best 
performer, with improved accuracy shown from an R-square of 0.448 and an RMSE of 0.169 for 
estimating the level of Chl-a. This study has revealed a marked seasonal upwelling at Satonda 
Island, particularly from June to November every year. It was marked with a drop in SST and an 
increase in Chl-a concentration of water, and the phenomenon was observed for these months, 
suggesting enhanced marine productivity. The peaks of the upwelling were subject to annual 
variations, but the variations showed the continuity of ecological rhythm attached to the 
fluctuating climatic and oceanographic conditions. The precise performance of the RF algorithm 
in capturing these variations points to its robustness in monitoring the environment. Such results 
clearly emphasize the critical utilization of cutting-edge technologies in environmental 
surveillance and marine conservation, such as remote sensing and machine learning. More 
advanced research and analysis will help general research show more comprehensive spatial 
scales and environmental factors related to variations. Our summarized work, on the one hand, 
shows that satellite data combined with machine learning is adequate in the study of marine 
conditions and, on the other hand, underscores predictability patterns in upwelling and 
implications on aquatic biodiversity and productivity. The success of the RF algorithm in 
estimating key water quality parameters over a considerable period opens the way for marine 
health preservation, together with the possible understanding of the impacts of climate change 
on ocean dynamics. 
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