

RESPON PEMBERIAN GIBERELIN TERHADAP KANDUNGAN FENOLIK DAN AKTIVITAS ANTIOKSIDAN PADA BUAH TANAMAN CIPLUKAN

(Physalis angulata L.)

Influence of Giberellin on Phenolic Content and Antioxidant Activity in Ciplukan Fruit (Physalis angulata L.)

Fitra Dea Wafa¹⁾, Mohammad Ubaidillah¹⁾, Tri Agus Siswoyo²⁾*

¹⁾Program Studi Agroteknologi, Fakultas Pertanian, Universitas Jember
²⁾Pusat Unggulan IPTEK Perguruan Tinggi Bioteknologi Tanaman Industri (PUI-PT BioTIn),
Universitas Jember

Jalan Kalimantan No. 37 Kampus Bumi Tegal Boto, Jember, Jawa Timur, Indonesia *Korespondensi Penulis: triagus.faperta@unej.ac.id

ABSTRACT

Ciplukan (*Physalis angulata L.*) is one of the plants from the class of herbal plants that is good to be developed because people are starting to choose herbal treatment. The content of ciplukan fruit is phenolic and flavonoid. Thus, technology for enlargement and increasing fruit content with the giberellin (GA_3) hormone is needed. GA_3 functions to stimulate the formation, development of fruit and increase the biosynthesis of secondary metabolites. This study aimed to determine the influence of the GA_3 hormone on the phenolic content and antioxidant activity in ciplukan fruit. The experimental design used RAL 5 treatments: GA_3 concentrations of 0 ppm (PO), 15 ppm (P1), 20 ppm (P2), 25 ppm (P3), and 30 ppm (P4). The parameters studied were the number of fruit, fruit size, fresh weight of fruit, total phenolic, total flavonoid, and antioxidant activity (DPPH method) in ciplukan fruit. The results showed that the concentration of 30 ppm (P4) of GA_3 was showed the highest values on the number of fruits (33 ± 3.53 g), fruit length (14.23 ± 0.35 mm), width (12.87 ± 0.39 mm), and fresh fruit weight (38.6 ± 3.97 g) without calyx. The concentration of 30 ppm (P4) also affected the phenolic content (2.52 ± 0.23 mgGAE/g), flavonoids (2.43 ± 0.18 mgQE/g), and IC_{50} value of antioxidant activity (60.59 g/mL).

Keywords: antioxidant activity, ciplukan, flavonoid, giberellin, phenolic

PENDAHULUAN

ciplukan (Physalis Tanaman angulata L.) merupakan tanaman dari famili Solanaceae dengan buah memiliki pembungkus menyerupai daun. Beberapa masyarakat tahun terakhir, memilih pengobatan secara alamiah (herbal). Tanaman obat yang banyak dimanfaatkan, namun belum banyak dibudidayakan yaitu tanaman ciplukan (Physalis angulata L.) (Kusumaningtyas et al., 2015). Tanaman ini merupakan jenis tanaman herbal liar yang berperan sebagai penghilang nyeri dan penetral racun. Manfaat lain yaitu mampu menghambat beberapa penyakit seperti hepatitis, asma, dermatitis, malaria, gusi berdarah, hipertensi, dan (Marpaung et al., 2015). Dari berbagai penelitian diketahui bahwa tanaman ciplukan mengandung senyawa kimia seperti fenolik dan flavonoid (Nuranda et al., 2016). Bahan bioaktif berupa fenolik

dan flavonoid yang terkandung dalam tanaman ciplukan sangat bermanfaat sebagai sumber bahan baku obat herbal.

Zat pengatur tumbuh (ZPT) memengaruhi sintesis protein dan aktivitas enzim, sehingga dapat memacu kerja enzim dalam metabolisme tanaman meningkatkan reaksi-reaksi biokimia (Wattimena, 1992). **ZPT** dapat mengaktifkan respon biokimia, fisiologis, dan morfologis. Hormon giberelin khususnya GA3 banyak digunakan untuk meningkatkan kualitas tanaman, seperti meningkatkan pertumbuhan dan hasil produktivitas (Yennita, 2014).

Pemberian hormon giberelin (GA₃) dengan konsentrasi 45 ppm terbukti berpengaruh terhadap pembentukan buah tomat (Muhyidin et al., 2018). Penambahan hormon GA dengan konsentrasi 20 ppm mampu meningkatkan ukuran dan berat buah serta mampu meningkatkan kadar gula buah ciplukan (Kaur et al., 2013). Pada fase generatif tanaman, GA memacu pembungaan, pembentukan, dan perkembangan buah sampai panen. Giberelin yang umum digunakan yaitu GA₃ (Wattimena, 1992).

Berdasarkan penelitian yang dilaksanakan diketahui bahwa **ZPT** memengaruhi pertumbuhan, kandungan fenolik, dan aktivitas antioksidan tanaman lentil (Giannakoula et al., 2012). sebesar Konsentrasi GA₃ mg/L konsentrasi terbaik merupakan untuk biosintesis produksi kandungan flavonoid, produksi total flavonoid, total fenolik, kandungan total fenolik, dan aktivitas antioksidan pada tanaman Stevia rebaudiana (Ahmad et al., 2020). Hormon GA_3 secara signifikan meningkatkan metabolit sekunder dalam biosintesis flavonoid (Kim et al., 2009). Fungsi

ciplukan digunakan sebagai alternatif obat tradisional maka penggunaan akan tanaman ini semakin meningkat. Jumlah produsen ciplukan di Indonesia masih sedikit dan harga ciplukan yang tinggi ini memengaruhi peluang pasar semakin besar (Nugraha & Ernah, 2018).

Berdasarkan latar belakang di atas, tanaman ciplukan (*Physalis angulata* L.) digunakan sebagai alternatif tanaman herbal tradisional. Budidaya secara terarah guna memperoleh hasil yang berkualitas dan berkuantitas tinggi perlu dilakukan guna memenuhi kebutuhan obat herbal. Penelitian ini dilakukan kajian pengaruh pemberian GA₃ terhadap produktivitas tanaman dan kandungan bahan bioaktif tanaman ciplukan.

METODE PENELITIAN

Alat dan Bahan

Alat utama yang digunakan dalam penelitian adalah sentrifuge (Hitachi CF15RX II), spektrofotometer UV-Vis (Hitachi type U-2900 UV-Vis, Japan), dan alat pendukung lainnya. Bahan yang digunakan dalam penelitian antara lain benih tanaman ciplukan (Panda Fram Group, Poerwokerto) dan GA₃ (GibGro). Bahan yang digunakan untuk analisis kimia diantaranya ethanol (p.a), methanol (p.a), AlCl₃ Na₂CO₃, NaNO₂, *folin ciocalteu reagent, quercetin, gallic acid*, DPPH, dan bahan kimia pendukung lainnya.

Tahapan Penelitian

Persiapan benih dilakukan dengan cara merendam dalam air distilat dan memilih biji yang tenggelam sebagai benih yang terpilih untuk ditanam. Penanaman benih dilakukan dengan menabur benih pada permukaan media yang sudah dipersiapkan di polybag. Penjarangan dilakukan sampai memperoleh tanaman yang sehat. Pemeliharan dilakukan dengan menyiram dan mengendalian **OPT** secara manual. **Aplikasi** GA_3 dilakukan dengan menggunakan variasi konsentrasi (0, 15, 20, 25, dan 30 ppm) dan disemprot dengan interval waktu 3x sehari hingga 1 minggu sebelum panen (umur panen berkisar 3 bulan). Aplikasi GA₃ dilakukan pada saat tanaman ciplukan memasuki awal fase generatif. Panen ciplukan dilakukan jika buah sudah masuk fase masak secara fisiologis berwarna hijau kekuningan hingga kuning dan apabila disentuh akan mudah rontok.

Penentuan Karakter Morfologi Buah Jumlah Buah (Buah/Tanaman)

Perhitungan jumlah buah per tanaman dilakukan setelah proses panen. Jumlah buah diketahui dengan menghitung buah yang masak fisiologis dari proses panen.

Ukuran Buah (cm dan mm)

Ukuran buah dihitung dengan mengambil 3 sampel secara acak per tanaman dengan menggunakan penggaris dan jangka sorong. Kemudian mencatat data yang diperoleh. Pengukuran dilakukan pada buah dengan *calyx* dan tanpa *calyx*.

Bobot Segar Buah (g)

Pengukuran bobot segar buah dilakukan dengan cara menimbang berat buah total yang dihasilkan pada setiap tanaman. Penimbangan bobot segar buah dilakukan baik pada buah dengan *calyx* dan tanpa *calyx*.

Metode Analisis

Ekstaksi Sampel Buah Ciplukan

Ekstrasi sampel dilakukan berdasarkan metode Pambudi (2017),dengan beberapa modifikasi, 1 g sampel buah ciplukan yang telah diberikan perlakuan konsentrasi GA3 dicuci terlebih dahulu dengan air mengalir dan kemudian dikeringkan. Buah ciplukan dipotong kecil dan 3 mL methanol (50%) ditambahkan dengan perbandingan 1:3 (w/v) kemudian dihaluskan dengan menggunakan mortar. Larutan jus disaring dengan menggunakan kain tipis kemudian disentrifugasi dengan kecepatan 10.000 rpm selama 15 menit. Supernatan yang diperoleh digunakan untuk analisis selanjutnya.

Analisis Kandungan Total Fenolik

Berdasarkan metode Malik & Ahmad (2015), dengan beberapa modifikasi. Asam galat ditimbang 10 mg dimasukkan ke dalam labu ukur 10 mL dan ditambahkan methanol (p.a) sampai 10 mL. Kemudian dibuat serangkaian larutan standar 5, 10, 15, 20, dan 25 μg/mL. Sebanyak 10 μL hasil supernatan sampel ekstraksi dilarutkan dalam 40 µL methanol, 1 mL NaCO₃ (2%), dan 50 µL Folin Ciocalteu (50%). Hasil campuran divortex kemudian diinkubasi selama 30 menit. Nilai absorbansi diukur pada panjang gelombang 750 nm. Hasil absorbansi yang diperoleh dibandingkan dengan standar asam galat. Satuan total fenol dalam mgGAE/g sampel.

Analisis Kandungan Flavonoid

Berdasarkan metode Ahmad *et al.* (2014), dengan beberapa modifikasi. Kuersetin ditimbang 10 mg dimasukkan ke dalam labu ukur 10 mL, kemudian ditambahkan dengan methanol (p.a) sampai 10 mL. Kemudian dibuat serangkaian

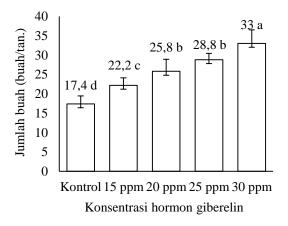
larutan standar kuersetin 5, 10, 15, 20, dan 25 μg/mL. Sebanyak 10 μL supernatan dan 30 µL NaNO₂ (5%), kemudian diinkubasi selama 5 menit. Campuran tersebut ditambahkan 30 иL AlCl₃ lalu diinkubasikan selama 6 menit. 200 µL NaOH (1 N) dan 240 μL akuades ditambahkan ke dalam larutan tersebut. Nilai absorbansi diukur pada panjang gelombang 415 nm. Hasil absorbansi yang diperoleh dibandingkan dengan standar kuersetin. Satuan total flavonoid dalam mg QE/g sampel.

Analisis Aktivitas Antioksidan

Berdasarkan metode Yuslianti (2019),beberapa modifikasi. dengan Larutan pereaksi DPPH dengan konsentrasi 30 µg/mL dalam pelarut methanol. Larutan pembanding kuersetin dibuat dengan melarutkan 10 mg kuersetin dalam labu ukur 100 mL dan ditambahkan methanol (p.a) sampai 100 mL. Membuat variasi konsentrasi 5, 10, 15, 20, dan 25 μg/mL. Methanol (80%) ditambahkan ke dalam ekstrak buah ciplukan untuk membuat larutan ekstrak dengan konsentrasi akhir 5, 10, 15, 20, dan 25 µg/mL. Pengukuran serapan peredaman radikal bebas DPPH dengan memasukkan larutan uji dan pembanding 1,5 mL ditambah dengan 3,0 mL larutan pereaksi DPPH, dikocok hingga homogen, disimpan selama 30 menit. Kemudian diambil serapannya dengan panjang gelombang 517 nm. Aktivitas antioksidan dihitung mengunakan rumus sebagai berikut:

% Peredaman =
$$\left[\frac{(ABSk - ABSs)}{ABSk} \right] x 100$$

Dimana: ABSk = absorbansi kontrol ABSs = absorbansi sampel


Data Analisis

Data yang diperoleh dianalisis menggunakan *analysis of variance* (ANOVA). Jika terdapat beda nyata maka dilakukan uji lanjut *Duncan test* dengan taraf kepercayaan 95%.

HASIL DAN PEMBAHASAN

Karakter Morfologi Buah Ciplukan

Pengaruh pemberian hormon GA₃ pada kosentrasi yang berbeda memberikan pengaruh yang berbeda nyata ($\alpha = 5\%$) pada karakter morfologi buah ciplukan (Physalis angulata L.). Berdasarkan Gambar 1 menunjukkan hasil jumlah buah pada perlakuan P0 sebanyak 17,4 buah/tanaman, berbeda nyata dengan perlakuan P1 sebanyak 22,2 buah/tananam, P2 sebanyak 25,8 buah/tanaman, P3 sebanyak 28,8 buah/tanaman. P4 sebanyak 33 buah/tanaman. Hasil P2 berbeda tidak nyata dengan perlakuan P3. Perlakuan P4 berbeda nyata dengan perlakuan lainnya. Perlakuan terbaik terdapat pada P4 dengan rata-rata jumlah buah sebanyak 33 buah/tanaman. pada konsentrasi 30 ppm GA₃.

Gambar 1. Jumlah buah tanaman ciplukan setelah pemberian giberelin

Pemberian berpengaruh GA_3 terhadap jumlah buah, hal ini disebabkan oleh hormon giberelin dapat memicu proses generatif tanaman. Hormon giberelin acid dapat membantu dalam pembelahan, pembesaran, serta pemanjangan sel. Fungsi lain dari GA3 yaitu mampu mendorong pertumbuhan tanaman, membuat perkembangan tanaman menjadi lebih cepat, menunjang mekanisme fisiologis tanaman, dan memengaruhi sifat dari genetik tanaman (Suherman et al., 2016). Hal ini sesuai dengan Rolistyo et al. (2014), menyatakan bahwa proses pemberian hormon GA₃ secara signifikan mampu meningkatkan jumlah buah dan berat segar buah per tanaman. Perbedaan yang nyata antara setiap konsentrasi GA3 dengan kontrol pada jumlah buah panen total ini sesuai dengan pernyataan Khan et al. (2006), bahwa pemberian konsentrasi yang efektif dapat berpengaruh terhadap jumlah buah per tanaman serta mampu meningkatkan jumlah *fruit* set dan mencegah kerontokan buah. Ouzounidou et al. (2010) melaporkan bahwa pemberian hormon GA₃ berpengaruh nyata terhadap jumlah buah per tanaman.

Tabel 1. Ukuran buah dengan *calyx* pada tanaman ciplukan setelah diberi hormon giberelin (GA₃)

Perlakuan	Ukuran buah dengan calyx	
konsentrasi GA ₃	Panjang (cm)	Lebar (cm)
P0 (0 ppm)	$2,17\pm0,05^{d}$	$1,51\pm0,08^{e}$
P1 (15 ppm)	$2,51\pm0,08^{c}$	$1,69\pm0,12^{d}$
P2 (20 ppm)	$2,58\pm0,09^{c}$	$1,92\pm0,05^{c}$
P3 (25 ppm)	$2,81\pm0,17^{b}$	$2,07\pm0,09^{b}$
P4 (30 ppm)	$3,06\pm0,10^{a}$	$2,33\pm0,17^{a}$

Keterangan: Angka yang diikuti dengan huruf yang sama menunjukkan berbeda tidak nyata pada uji Duncan dengan taraf kepercayaan 95%

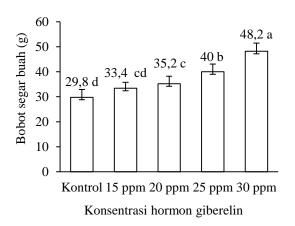
Gambar 2. Ukuran buah ciplukan dengan *calyx* pada konsentrasi hormon GA₃ 0 ppm/kontrol (P0), 15 ppm (P1), 20 ppm (P2), 25 ppm (P3) dan 30 ppm (P4)

Pada **Tabel 1**, hasil analisis ANOVA yang dilanjutkan uji Duncan menunjukkan bahwa pada data panjang buah perlakuan P0 (kontrol) sebesar 2,17 cm berbeda nyata dengan perlakuan lainnya. Hasil perlakuan P1 yaitu 2,51 cm yang berbeda tidak nyata dengan perlakuan P2 2,58 cm, namun berbeda nyata dengan P3 2,81 cm dan P4 3,06 cm. Hasil perlakuan antara P3 dan P4 berbeda nyata. Perlakuan yang memberikan respon nilai tertinggi berdasarkan Tabel 1 terdapat pada P4 dengan nilai rata-rata sebesar 3,06 cm dan konsentrasi GA₃ 30 ppm, disebabkan perlakuan P4 memberikan pengaruh signifikan dengan nilai tertinggi terhadap peningkatan ukuran panjang buah dengan *calyx* (kelopak). Pada **Tabel 1** dan **Gambar 2**, lebar buah dari setiap perlakuan menghasilkan nilai yang berbeda nyata terhadap satu sama lain. Hasil rata-rata lebar buah yaitu P0 sebesar 1,51 cm, P1 sebesar 1,69 cm, P2 sebesar 1,92 cm, P3 sebesar 2,07 cm, dan P4 sebesar 2,33 cm. Hal ini menunjukkan bahwa pemberian hormon GA₃ berpengaruh terhadap ukuran lebar buah. Perlakuan terbaik terdapat pada perlakuan P4 dengan rata-rata 2,33 cm menggunakan perlakuan konsentrasi GA_330 ppm.

Menurut Setyati (1983), pemberian hormon GA₃ mengakibatkan kegiatan metabolisme meningkat dan kemudian laju fotosintesis meningkat. Hal ini menyebabkan karbohidrat yang terbentuk akan semakin meningkat dan kemudian dapat dimanfaatkan dalam proses perkembangan buah. Menurut Isbandi (1983), derajat pembentukan buah diatur oleh kandungan konsentrasi hormon GA3 baik yang terdapat di dalam tanaman maupun pemberian hormon secara eksogen. Hasil ini sesuai dengan Kaur et al. menyatakan (2013)yang penambahan kosentrasi hormon GA_3 berpengaruh dalam pembentukan diameter buah dan kandungan gula yang terkandung dalam buah ciplukan.

Tabel 2. Ukuran buah dengan tanpa *calyx* pada tanaman ciplukan setelah diberi hormon giberelin (GA₃)

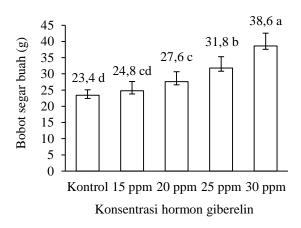
Perlakuan konsentrasi	Ukuran buah tanpa calyx	
GA ₃	Panjang (mm)	Lebar (mm)
P0 (0 ppm)	10,85±0,20 ^e	110,06±0,32e
P1 (15 ppm)	$11,55\pm0,26^{d}$	$10,69\pm0,20^{d}$
P2 (20 ppm)	$12,01\pm0,27^{c}$	$11,32\pm0,25^{c}$
P3 (25 ppm)	$13,21\pm0,32^{b}$	$12,26\pm0,27^{b}$
P4 (30 ppm)	$14,23\pm0,35^{a}$	$12,87\pm0,39^{a}$


Keterangan: Angka yang diikuti dengan huruf yang sama menunjukkan berbeda tidak nyata pada uji Duncan dengan taraf kepercayaan 95%

Berdasarkan Tabel 2, panjang buah dari setiap perlakuan yang dilakukan menghasilkan data yang berbeda nyata terhadap satu sama lain. Rata-rata pada setiap perlakuan vaitu P0 sebesar 10,85 mm, P1 sebesar 11,55 mm, P2 sebesar 12,01 mm, P3 sebesar 13,21 mm, dan P4 sebesar 14,23 mm. Hal ini menunjukkan bahwa pemberian hormon GA_3 berpengaruh terhadap ukuran panjang buah tanaman ciplukan. berdasarkan Tabel 2, dapat ditentukan perlakuan dengan memberikan nilai tertinggi terdapat pada perlakuan P4 dengan rata-rata 14,23 mm menggunakan konsentrasi hormon GA₃ 30 ppm.

Gambar 3. Ukuran buah ciplukan tanpa *calyx* dengan konsentrasi hormon GA3 0 ppm/ kontrol (P0), 15 ppm (P1), 20 ppm (P2), 25 ppm (P3) dan 30 ppm (P4)

Pada Tabel 2 dan Gambar 3. menunjukkan rata-rata lebar buah pada setiap perlakuan didapatkan nilai yaitu P0 sebesar 10,06 mm, P1 sebesar 10,69 mm, P2 sebesar 11,32 mm, P3 sebesar 12,26 mm, dan P4 sebesar 12,87 mm. Diketahui bahwa rata-rata seluruh perlakuan menghasilkan data yang berbeda nyata terhadap satu sama lain pada pengukuran lebar buah tanpa *calyx* pada tanaman ciplukan. Pada Tabel 2 dapat ditentukan perlakuan terbaik terdapat pada perlakuan P4 (30 ppm) dengan rata-rata 12,87 mm. Pertumbuhan tanaman ciplukan yang dipengaruhi oleh pemberian hormon GA₃ dapat tumbuh secara optimal sehingga juga akan memberi dampak pada ukuran buah ciplukan tanpa calyx. Menurut Dennita et al. (2017), konsentrasi pemberian hormon GA₃ yang sesuai akan dapat memengaruhi proses biokimia dalam tubuh tanaman sehingga terjadinya peningkatan fotosintesis dan fotosintatnya digunakan menentukan kebutuhan dalam pembentukan buah hingga proses pemanenan. Hal ini sesuai dengan pendapat Wattimena (1992), bahwa pemberian hormon GA₃ dapat mengakibatkan laju fotosintesis meningkat, sehingga karbohidrat yang terbentuk akan meningkat dan dimanfaatkan untuk perkembangan buah.



Gambar 4. Bobot segar buah dengan *calyx* pada tanaman ciplukan

Berdasarkan Gambar 4, bobot segar buah dengan *calyx* perlakuan P0 sebesar 29.8 g, P1 sebesar 33.4 g, P2 sebesar 35.2 g, P3 sebesar 40 g, dan P4 sebesar 48,2 g. Gambar 4 menunjukkan perlakuan P2 berbeda tidak nyata dengan P1, namun berbeda nyata dengan perlakuan P0, P3, dan P4. Rata-rata perlakuan P1 berbeda tidak nyata dengan P0 dan P2, namun berbeda nyata dengan P3 dan P4. Perlakuan P4 memiliki rata-rata yang berbeda nyata dengan perlakuan lainnya. Perlakuan yang memberikan nilai tertinggi terdapat pada perlakuan P4 yang dapat memberikan pengaruh signifikan terhadap penambahan nilai rata-rata bobot segar buah dengan ratarata 48,2 g, dan hasil rata-rata terendah yaitu pada perlakuan P0 sebesar 29,8 g.

Widyasmara *et al.* (2019), menyatakan bahwa peningkatan konsentrasi hormon GA₃ 150 ppm dapat memacu pembungaan tomat. Menurut Wilkins (1992), pemberian konsentrasi hormon GA₃ yang optimal akan mampu meningkatan proses pembesaran buah, yang dikarenakan setelah fertilisasi, akan terjadinya sistesis hormon GA₃ pada bagian

endosperm embrio. Hal ini serta menunjukkan bahwa hormon GA₃ diperlukan dalam pertumbuhan buah. Semakin besar buah yang dihasilkan bobot segar buah akan bertambah. Berdasarkan hal tersebut, peningkatan bobot segar buah dengan calyx pada konsentrasi hormon GA₃ yang optimum dibandingkan kontrol berbanding lurus, sesuai dengan pernyatan Gelmesa al.(2010),pemberian etkonsentrasi hormon GA_3 mampu meningkatkan berat buah dengan rata-rata 27% dibandingkan dengan tanpa dilakukannya perlakuan hormon GA₃.

Gambar 5. Bobot segar buah tanpa *calyx* pada tanaman ciplukan

Berdasarkan **Gambar 5**, bobot segar buah tanpa *calyx* pada setiap perlakuan yaitu P0 sebesar 23,4 g, P1 sebesar 24,8,4 g, P2 sebesar 27,6 g, P3 sebesar 31,8 g, dan P4 sebesar 38,6 g. Pada perlakuan P2 berbeda tidak nyata dengan P1, namun berbeda nyata dengan perlakuan P0, P3, dan P4. Rata-rata perlakuan P1 berbeda tidak nyata dengan P0 dan P2, namun berbeda nyata dengan P3 dan P4. Perlakuan P4 memiliki rata-rata yang berbeda nyata dengan perlakuan Perlakuan P4 memiliki rata-rata yang berbeda nyata dengan perlakuan P4 dengan rata-rata 38,6 g, dan rata-rata terendah yaitu pada perlakuan P0 sebesar 23,4 g.

Hasil pengaruh pemberian hormon GA₃ optimal lebih baik dibandingkan dengan kontrol dikarenakan menurut penelitian Chaudhary et al. (2006),menunjukkan bahwa pemberian hormon GA₃ meningkatkan produksi buah lebih tinggi dibandingkan dengan kontrol. Menurut Salisbury & Ross (1995), hormon GA₃ memicu terbentuknya enzim αamilase yang akan memecah amilum sehingga kandungan gula dalam sel meningkat dan air di luar sel kemudian masuk ke dalam sel, sehingga sel akan memanjang. Hasil dari pemecahan amilum tersebut akan digunakan untuk respirasi oleh mitokondria dan menghasilkan ATP yang digunakan sebagai energi dalam proses pembentangan sel. Dengan demikian proses-proses tersebut akan menghasilkan penambahan berat buah yang dihasilkan. Permatasari et al. (2016), menyatakan bahwa semakin besar konsentrasi hormon GA3 yang diberikan maka akan bertambah pula ukuran suatu sel akibat pembelahan adanya pembentangan, sehingga bobot segar buah akan semakin bertambah. Ukuran buah tersebut dapat dipengaruhi pemanjangan dan pembelahan sel yang terjadi pada sel buah.

Kandungan Total Fenol dan Total Flavonoid pada Buah Ciplukan

Pengamatan fisiologis yang dilakukan yaitu menghitung kandungan total fenol dan total flavonoid pada buah ciplukan. Satuan kandungan total fenol yaitu mgGAE/g, sedangkan untuk kandungan total flavonoid yaitu mgQE/g. Hasil pengukuran kandungan total fenol dan flavonoid pada buah ciplukan tersaji pada **Tabel 3**.

Tabel 3. Kandungan total fenol dan total flavonoid buah ciplukan pada berbagai konsentrasi GA₃

Perlakuan	Total fenol	Total
konsentrasi	(mgGAE/g)	flavonoid
GA_3		(mgQE/g)
P0 (0 ppm)	$1,45\pm0,06^{d}$	$1,25\pm0,12^{d}$
P1 (15 ppm)	$1,88\pm0,10^{c}$	$1,75\pm0,07^{c}$
P2 (10 ppm)	$2,00\pm0,12^{bc}$	$1,88\pm0,05^{c}$
P3 (15 ppm)	$2,16\pm0,14^{b}$	$2,10\pm0,12^{b}$
P4 (30 ppm)	$2,52\pm0,23^{a}$	$2,43\pm0,18^{a}$

Keterangan: Angka yang diikuti dengan huruf yang sama menunjukkan berbeda tidak nyata pada uji Duncan dengan taraf kepercayaan 95%

Tabel 3 menunjukkan bahwa adanya penambahan konsentrasi hormon GA₃ diikuti dengan peningkatan kandungan fenolik dan flavonoid. Kandungan total fenolik pada setiap perlakuan yaitu P0 (1,45 mgGAE/g), P1 (1,88 mgGAE/g), P2 (2,00 mgGAE/g), P3 (2,16 mgGAE/g), dan P4 (2,52 mgGAE/g). Pada **Tabel 3**, kandungan total fenol perlakuan P4 berbeda nyata dengan perlakuan lainnya, namun nilai pada perlakuan P3 berbeda tidak nyata dengan P2. Kandungan total flavonoid yaitu P0 (1,25 mgQE/g), P1 (1,75 mgQE/g), P2 (1,88 mgQE/g), P3 (2,10 mgQE/g), dan P4 (2,43 mgQE/g). Pada **Tabel 3** diketahui bahwa kandungan total flavonoid pada perlakuan P4 berbeda nyata dengan perlakuan lainnya, sedangkan P2 berbeda tidak nyata dengan P1. Perlakuan P4 dengan konsentrasi GA₃ 30 ppm merupakan perlakuan terbaik dengan kandungan total fenol tertinggi sebesar 2,52 mgGAE/g dan total flavonoid sebesar 2,43 mgQE/g.

Perlakuan hormon GA₃ meningkatkan metabolit sekunder yaitu fenolik dan flavonoid. Senyawa fenolik dan flavonoid dikenal sebagai antioksidan

alami karena memiliki properti penangkap radikal yang menghasilkan antioksidan (Yuslianti, 2019). Hasil pada Tabel 3 ini sesuai dengan temuan Liang et al. (2013), yang menyatakan hormon GA3 juga dapat memengaruhi produksi asam fenolik. Akumulasi asam akan diinduksi oleh konsentrasi hormon GA3 yang tinggi, berkurang namun dengan perlakuan yang rendah. konsentrasi Pernyataan tersebut sesuai dengan Giannakoula et al. (2012), bahwa hormon GA₃, IAA, dan kinetin secara signifikan dapat meningkatkan senyawa fenolik pada tanaman. Ahmad et al. (2020), bahwa kandungan flavonoid total meningkat sesuai dengan meningkatnya konsentrasi hormon GA₃. Hormon GA₃ secara siginifikan mempromosikan metabolit sekunder dalam biosintesis flavonoid. Menurut Kim et al. (2009), menyatakan bahwa studi yang dilakukan menunjukkan tingkat kandungan flavonoid tanaman dipengaruhi secara signifikan oleh ZPT.

Berdasarkan hasil yang diperoleh penambahan konsentrasi GA_3 pada ciplukan diikuti dengan kandungan bahan bioaktif fenolik dan flavonoid yang meningkat. Fungsi lain GA3 yaitu dapat digunakan sebagai elisitor. Menurut Ahmad et al. (2020), elisitor adalah suatu molekul sinyal yang memacu terbentuk senyawa metabolit sekunder dengan menginduksi respon perlindungan diri ketika diaplikasikan pada jaringan tanaman. Hormon giberelin juga digunakan sebagai elisitor dalam biosintesis fenolik dan flavonoid. Menurut Dicko et al. (2006), proses biosintesis senyawa fenolik yaitu dengan memproduksi fenilalalin yang mengalami deaminasi oleh enzim phenylalanine ammonia lyase (PAL) menjadi derivat asam sinamat. Derivat

menjadi asam sinamat akan diubah senyawa fenol. Sehingga terdapat kemungkinan giberelin dapat memengaruhi bahan bioaktif fenol dan flavonoid. Menurut Medrano et al. (2015), diketahui bahwa total fenolik dan flavonoid pada spesies yang dianalisis **Physalis** terakumulasi khusunya pada daun dan Dengan demikian terdapat calyx. kemungkinan bahwa nilai total fenolik dan flavonoid hampir menyerupai disebabkan adanya indikasi akumulasi senyawa pada calyx. Menurut Veit et al. (1995), setiap spesies memiliki potensi yang berbedabeda dalam mensintesis dan mengakumulasi flavonoid, dan fenolat pada umumnya, proses sintesis dipengaruhi oleh hasil interaksi genetik dan faktor lingkungan.

Aktivitas Antioksidan pada Buah Ciplukan

Pengamatan fisiologis yang dilakukan berikutnya yaitu menghitung nilai IC₅₀ aktivitas peredaman DPPH yang terkandung di dalam buah ciplukan. Data variabel ini diperoleh dengan menggunakan metode DPPH, dengan beberapa modifikasi. Nilai IC₅₀ pada sampel buah ciplukan tersaji pada **Tabel 4**.

Nilai IC₅₀ menunjukkan seberapa besar konsentrasi sampel buah ciplukan yang dibutuhkan dalam menghambat 50% aktivitas radikal bebas. Semakin kecil nilai IC₅₀ yang ditunjukkan maka semakin efektif sampel tersebut dalam menghambat radikal bebas yang diberikan. Berdasarkan **Tabel 4**, nilai IC₅₀ pada perlakuan P0 sebesar 849,06 μg/mL, P1 sebesar 568,61 μg/mL, P2 sebesar 293,00 μg/mL, P3 119,92 μg/mL, dan P4 60,59 μg/mL. Perlakuan P4 menunjukkan aktivitas peredaman yang lebih baik dengan nilai

 IC_{50} yang lebih kecil dibandingkan dengan perlakuan lainnya yaitu 60,59 µg/mL, artinya dengan konsentrasi sampel buah ciplukan 60,59 µg/mL sudah mampu menghambat 50% aktivitas radikal bebas.

Tabel 4. Nilai aktivitas antioksidan (IC_{50}) dari sampel buah ciplukan pada berbagai perlakuan konsentrasi GA_3

Perlakuan konsentrasi	IC ₅₀
GA_3	$(\mu g/mL)$
P0 (0 ppm)	849,06
P1 (15 ppm)	568,61
P2 (20 ppm)	293,00
P3 (25 ppm)	119,92
P4 (30 ppm)	60,59

Menurut Cahyaningrum et al. (2011), fenolik merupakan senyawa yang memiliki hidroksil dan berkemampuan gugus hidrogennya mendonorkan sehingga terstabilkan oleh resonansi yang terdapat pada struktur fenolik, sehingga senyawa ini dapat berfungsi sebagai antioksidan. Kadar total fenolik berbanding lurus dengan aktivitas antioksidan sehingga semakin tinggi kadar fenolik maka antioksidan akan semakin tinggi. Berdasarkan Tabel 4 diketahui bahwa kandungan senyawa fenolik tertinggi pada perlakuan P4 (30 ppm), dengan demikian pada Tabel 4. diperoleh aktivitas antioksidan tertinggi pada perlakuan P4 30 ppm dengan nilai IC₅₀ ekstrak buah ciplukan yang telah diberikan hormon GA3 terbaik yaitu 60,59 µg/mL. Nilai IC₅₀ semakin kecil dari suatu antioksidan maka akan semakin kuat aktivitas antioksidan tersebut. Dengan demikian. aktivitas antioksidan terkandung dalam ekstrak buah ciplukan tergolong kuat. Hal ini dapat diketahui dari Lung & Destiani (2017), menjelaskan antioksidan bahwa klasifikasi dibagi

menjadi 5 yaitu <50 μg/mL (sangat kuat), 50-100 μg/mL (kuat), 100-250 μg/mL (sedang), 250-500 μg/mL (lemah), dan >500 μg/mL (tidak aktif). **Tabel 4** sejalan dengan pernyataan Khandaker *et al.* (2012), menunjukkan bahwa IC₅₀ dari DPPH meningkat dengan adanya pengaplikasian ZPT. Secara keseluruhan buah-buahan yang diberikan aplikasi GA₃, NAA, dan 2,4-D meningkatkan kapasitas antioksidan.

KESIMPULAN

Pemberian hormon GA₃ pengaruh positif terhadap produksi, kandungan total fenolik, total flavonoid, dan aktivitas antioksidan pada buah ciplukan (Physalis angulata L.). Pemberian konsentrasi GA₃ 30 ppm menunjukkan nilai hasil tertinggi pada jumlah buah sebanyak 33 buah, ukuran panjang dan lebar buah dengan calyx masing-masing sebesar 3,06 cm dan 2,33 cm, ukuran panjang dan lebar buah tanpa *calyx* masing-masing sebesar 14,23 mm dan 12,87 mm, bobot segar buah dengan calyx seberat 48,2 g, dan bobot segar buah tanpa calyx sebesar 38,6 g. Kandungan total fenolik adalah 2,52 mgGAE/g dan kandungan total flavonoid 2,43 mgQE/g. Perlakuan konsentrasi GA₃ 30 ppm juga memengaruhi aktivitas antioksidan dan dengan menunjukkan peningkatan aktivitas peredaman 30,15% dan nilai IC₅₀ senilai 60,59 µg/mL yang dapat diartikan bahwa aktivitas antioksidan yang terkandung dalam buah ciplukan termasuk kuat.

DAFTAR PUSTAKA

Ahmad, A., Ali, H., Khan, H., Begam, A., Khan, S., Ali, S.S., Ahmad, N., Fazal, H., Ali, M., Hano, C., Ahmad, N., & Abbasi, B.H. (2020). Effect of gibberellic acid on production of biomass, polyphenolics

- and steviol glycosides in adventitious root cultures of *Stevia rebaudiana* (Bert.). *Plants*, 9(420), 1-14.
- Ahmad, A., Sakinah, R., Wisdawati, & Asrifa, W. (2014). Study of antioxidant activity and determination of phenol and flavonoid content of pepino's leaf extract (*Solanum muricatum* Aiton). *PharmTech Research*, 6(2), 600-606.
- Cahyaningrum, K., Husni, A., & Budhiyanti, S.A. (2016). Aktivitas antioksidan ekstrak rumput laut cokelat (*Sargassum polycystum*). *Agritech*, *36*(2), 137-144.
- Chaudhary, B.R., Sharma, M.D., Shakya, S. M., & Gautam, D.M. (2006). Effect of plant growth regulators on growth, yield and quality of chili (*Capsocum annuum* L.) at Rampur, Chitwan. *Agric. Anim. Sci*, 27(1), 65-68.
- Dennita, N.T., Onggo, M., & Kusumiyati (2017). Pengaruh berbagai konsentrasi dan metode aplikasi hormon GA₃ terhadap pertumbuhan dan hasil tanaman brokoli kultivar lucky di lembang. *Agrikultura*, 28(1), 9-14.
- Gelmesa, D., Abebie, B., & Desalegn, L. (2010). Effects of gibberellic acid and 2,4-dichlorophenoxyacetic acid spray on fruit yield and quality of tomato (*Lycopersicon esculentum Mill.*). *Plant Breeding and Crop Science*, 2(10), 316. 324.
- Giannakoula, A.E., Ilias, I.F., Maskimovic, J.J.D., Maskimovic, V. M., & Zivanovic, B. D. (2012). The effects of plant growth regulators on growth, yield, and phenolic profile of lentil plants. *Food Composition and Analysis*, 28(1), 46-53.
- Isbandi, J. 1983. *Pertumbuhan dan perkembangan tanaman*. Yogyakarta: Universitas Gadjah Mada.
- Kaur, G., Kaur, A.P., Singh, B., & Singh, S. (2013). Effect of plant growth

- regulators on fruit quality of cape gooseberry (*Physalis peruviana* L.) cv. ALIGARH. *Agricultural Sciences*, 9(2), 633-635.
- Khan, M.M.A., Gautam, C., Mohammad, F., Siddiqui, M.H., Naeem, N., & Khan, M.N. (2006). Effect of gibberelic acid spray on performance of tomato. *Turk J Biol*, *30*(1), 11-16.
- Khandaker, M.M., Boyce, A.N., Osman, N., & Hossain, A.S. (2012). Physiochemichal and phytochemical properties of wax apple (*Syzygium samarangense* [Blume] Merrill & L. M. Perry var. jambu madu) as affected by growth regulator application. *The Scientific World*, 1(1), 1-13.
- Kim, Y.H.., Humayun, M., Khan, A.L., Na, C.I., Kang, H S.M., Han, H., & Lee, I.J. (2009). Exogenous application of plant growth regulators increased the total flavonoid content in *Taraxacum officinale* Wigg. *Biotechnology*, 8(21), 5727-5732.
- Kusumaningtyas, R.W., Laily, N., & Limandha, P. (2015). Potential of ciplukan (*Physalis angulata* L.) as source of functional ingredient. *Procedia Chemistry*, 14, 367-372.
- Liang, Z., Ma, Y., Xu, T., Cui, B., Liu, Y., Guo, Z., & Yang, D. (2013). Effects of abscisic acid, gibberellin, ethylene and their interactions on production of phenolic acids in *Salvia miltiorrhiza* bunge hairy roots. *PLOS ONE*, 8(9), 1-9.
- Lung, J.K.S., & Destiani, D.P. (2017). Uji aktivitas antioksidan vitamin A, C, E dengan metode DPPH. *Farmaka*, *15*(1), 53-62.
- Malik, A., & Ahmad, A.R. (2015).

 Determination of phenolic and flavonoid contents of ethanolic extract of kanunang

- leaves (*Cordiamyxa* L.). *PharmTech Research*, 7(2), 243-246.
- Marpaung, I.S., Parhusip, D., & Sebayang, L. (2015). *Petunjuk Teknis Tumbuhan Berkhasiat untuk Kesehatan*. Medan: Balai Pengkajian Teknologi Pertanian Sumatera Utara
- Medrano, J.R.M., Abarca, N.A., Elizondo, M.S.G., Soto, J.N.U., Valdez, L.S.G., & Arrieta, Y.H. (2015). Phenolic constituents and antioxidant properties of five wild species of *Physalis* (Solanaceae). *Botanical Studies*, 56(24), 1-13.
- Muhyidin, H., Islami, T., & Maghfoer, M.D. (2018). Pengaruh konsentrasi dan waktu pemberian giberelin pada pertumbuhan dan hasil tanaman tomat (*Lycopersicon esculentum* Mill.). *Produksi Tanaman*, 6(6), 1147-1154.
- Nugraha, M.K.A., & Ernah. (2018). Strategi pengembangan agribisnis buah ciplukan (*Physalis peruviana*) di waaida farm, Jawa Barat. *Agricore*, 3(2), 537-547.
- Nuranda, A., Saleh, C., & Yusuf, B. (2016). Potensi tumbuhan ciplukan (*Physalis angulata* Linn.) sebagai antioksidan alami. *Atomik*, *I*(1), 5-9.
- Ouzounidou, G., Ilias, I., Giannakoula, A., & Papadopoulou, P. (2010). Comparative study on the effects of various plant growth regulators on growth, quality and physiology of *Capsicum Annum L. Pakistan Journal Botany*, 42(2), 805-814
- Pambudi, Y.B. (2017). "Uji antioksidan dan penetapam kandungan bromelain terhadap bovine serum albumin (BSA) dari ekstrak kulit buah nanas (*Ananas comosus* (L.) Merr)". Skripsi. Universiras Sanata Dharma, Yogyakarta.

- Permatasari, D.A., Rahayu, Y.S., & Ratnasari, E. (2016). Pengaruh pemberian hormon giberelin terhadap pertumbuhan buah secara partenokarpi pada tanaman tomat varietas tombatu F1. *LenteraBio*, *5*(1), 25-31.
- Rolistyo, A., Sunaryo, & Wardiyati, T. (2014). Pengaruh pemberian giberelin terhadap produktivitas dua varietas tanaman tomat (*Lycopersicum esculentum Mill*). *Produksi Tanaman*, 2(6), 457-463.
- Salisbury, F.B., & Ross, C.W. (1995). Fisiologi tumbuhan, biokimia tumbuhan, Jilid 2. Bandung: ITB.
- Setyati, S. (1983). *Pengantar agronomi*. Jakarta: Gramedia.
- Suherman, C., Nuraini, A., & Damayanthi, R. (2016). Pengaruh konsentrasi giberelin dan pupuk organik cair asal rami terhadap pertumbuhan dan hasil tanaman rami (*Boehmeria nivea* L. (Gaud)) klon ramindo 1. *Kultivasi*, *15*(3), 164-171.
- Viet, M., Beckert, C., Hohne, C., Bauer, K., & Geiger, H. (1995). Interspecific and intraspecific variation of phenolics in the genus *Equisetrum* Subgenus *Equisetrum*. *Phytochemistry*, *38*(1), 881-891.
- Wattimena, G.A. (1992). *Bioteknologi* tanaman. PAU Bioteknologi IPB. Bogor.
- Widyasmara, N., Rochmatino, & Prayoga, L. (2019). Pengaruh paklobutrazol dan GA₃ terhadap pertumbuhan dan pembungaan pada tanaman tomat (*Solanum lycopersicum*). *BioEksakta*, 1(2), 78-82.
- Wilkins, M.B. (1992). *Fisiologi Tumbuhan*. Jakarta: BumiAksara.
- Yennita. (2014). Pengaruh gibberelic acid (GA₃) terhadap kacang tanah (*Arachis hypogea* L.) pada fase generatif.

Pendidikan Biologi FKIP UNS, 11(1), 93-97.

Yuslianti, E.R. (2019). Prinsip dasar pemeriksaan radikal bebas dan antioksidan. Yogyakarta: Deepublish.